Background: Bezlotoxumab is a neutralizing antibody targeting toxin B of Clostridium difficile. Results: The structure of bezlotoxumab bound to a fragment of toxin B reveals its epitopes and mechanism of neutralization. Conclusion: The epitopes overlap with two of the presumed carbohydrate binding pockets, preventing binding of the toxin to target host cells. Significance: The data provide a molecular basis for neutralization by this clinically important antibody.
Hepatitis C virus (HCV) protease NS3 and its protein activator NS4A participate in the processing of the viral polyprotein into its constituent nonstructural proteins. The NS3/4A complex is thus an attractive target for antiviral therapy against HCV. We expressed the full-length NS3 and NS4A in insect cells as a soluble fusion protein with an N-terminal polyhistidine tag and purified the two proteins to homogeneity. Cleavage at the junction between HisNS3 and NS4A occurs during expression, producing a noncovalent complex between HisNS3 and NS4A with a subnanomolar dissociation constant. We purified the HisNS3/4A complex by detergent extraction of cell lysate and by metal chelate chromatography. We removed the His tag by thrombin cleavage and then further purified the complex by gel filtration. The purified NS3/4A complex is active in a protease assay using a synthetic peptide substrate derived from the NS5A-NS5B junction, with kcat/K(m) of 3700 (+/- 600) M-1 s-1, an order of magnitude above those previously reported for NS3 expressed by other strategies. This high protease activity implies that the full-length sequences of NS3 and NS4A are required for optimal activity of the NS3 protease domain. We examined the dependence of the NS3/4A protease activity on buffer conditions, temperature, and the presence of detergents. We find that, under most conditions, NS3 protease activity is dependent on the aggregation state of the NS3/4A complex. The monodisperse, soluble form of the NS3/4A complex is associated with the highest protease activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.