This is the post-print version of the article. The official published version can be obtained from the link below - Copyright @ 2007 SpringerIn this paper a genetic algorithm is proposed where the worst individual and individuals with indices close to its index are replaced in every generation by randomly generated individuals for dynamic optimization problems. In the proposed genetic algorithm, the replacement of an individual can affect other individuals in a chain reaction. The new individuals are preserved in a subpopulation which is defined by the number of individuals created in the current chain reaction. If the values of fitness are similar, as is the case with small diversity, one single replacement can affect a large number of individuals in the population. This simple approach can take the system to a self-organizing behavior, which can be useful to control the diversity level of the population and hence allows the genetic algorithm to escape from local optima once the problem changes due to the dynamics.This work was supported by FAPESP (Proc. 04/04289-6)
A partition crossover operator is introduced for use with NK landscapes, MAX-kSAT and for all k-bounded pseudoBoolean functions. By definition, these problems use a bit representation. Under partition crossover, the evaluation of offspring can be directly obtained from partial evaluations of substrings found in the parents. Partition crossover explores the variable interaction graph of the pseudo-Boolean functions in order to partition the variables of the solution vector. Proofs are presented showing that if the differing variable assignments found in the two parents can be partitioned into q non-interacting sets, partition crossover can be used to find the best of 2 q possible offspring. Proofs are presented which show that parents that are locally optimal will always generate offspring that are locally optimal with respect to a (more restricted) hyperplane subspace. Empirical experiments show that parents that are locally optimal generate offspring that are locally optimal in the full search space more than 80 percent of the time. Experimental results also show the effectiveness of the proposed crossover when used in combination with a hybrid genetic algorithm.
Surveillance Levels (SLs) are categories for medical patients (used in Brazil) that represent different types of medical recommendations. SLs are defined according to risk factors and the medical and developmental history of patients. Each SL is associated with specific educational and clinical measures. The objective of the present paper was to verify computer-aided, automatic assignment of SLs. The present paper proposes a computer-aided approach for automatic recommendation of SLs. The approach is based on the classification of information from patient electronic records. For this purpose, a software architecture composed of three layers was developed. The architecture is formed by a classification layer that includes a linguistic module and machine learning classification modules. The classification layer allows for the use of different classification methods, including the use of preprocessed, normalized language data drawn from the linguistic module. We report the verification and validation of the software architecture in a Brazilian pediatric healthcare institution. The results indicate that selection of attributes can have a great effect on the performance of the system. Nonetheless, our automatic recommendation of surveillance level can still benefit from improvements in processing procedures when the linguistic module is applied prior to classification. Results from our efforts can be applied to different types of medical systems. The results of systems supported by the framework presented in this paper may be used by healthcare and governmental institutions to improve healthcare services in terms of establishing preventive measures and alerting authorities about the possibility of an epidemic.
The NK hybrid genetic algorithm for clustering is proposed in this paper. In order to evaluate the solutions, the hybrid algorithm uses the NK clustering validation criterion 2 (NKCV2). NKCV2 uses information about the disposition of N small groups of objects. Each group is composed of K +1 objects of the dataset. Experimental results show that density-based regions can be identified by using NKCV2 with fixed small K. In NKCV2, the relationship between decision variables is known, which in turn allows us to apply gray box optimization. Mutation operators, a partition crossover, and a local search strategy are proposed, all using information about the relationship between decision variables. In partition crossover, the evaluation function is decomposed into q independent components; partition crossover then deterministically returns the best among 2 q possible offspring with computational complexity O(N ). The NK hybrid genetic algorithm allows the detection of clusters with arbitrary shapes and the automatic estimation of the number of clusters. In the experiments, the NK hybrid genetic algorithm produced very good results when compared to another genetic algorithm approach and to state-of-art clustering algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.