The renewable energy-based distributed generation (DG) implementation in power systems has been an active research area during the last few decades due to several environmental, economic and political factors. Although the integration of DG offers many advantages, several concerns, including protection schemes in systems with the possibility of bi-directional power flow, are raised. Thus, new protection schemes are strongly required in power systems with a significant presence of DG. In this study, an adaptive protection strategy for a distribution system with DG integration is proposed. The proposed strategy considers both grid-connected and islanded operating modes, while the adaptive operation of the protection is dynamically realized considering the availability of DG power production (related to faults or meteorological conditions) in each time step. Besides, the modular structure and fast response of the proposed strategy is validated via simulations conducted on the IEEE 13-node test system.
The need for flexibility in power system operation gradually increases regarding more renewable energy integration, load growth, etc., and the system operators already invest in this manner to enhance the power system operation. Besides, the power system has thermally sensitive assets such as lines, transformers, etc. that are normally operated under highly conservative static ratings. There is a growing trend in this regard to use the actual capacity of such assets dynamically under varying operating conditions leading to a dynamic thermal rating concept which is referred as dynamic line rating (DLR) approach specifically for lines. This study provides a comprehensive overview of existing perspectives on DLR and combination with other flexibility options from an operational point of view. Apart from the existing review studies more focused on implementation category of DLR concept, the concentration on more operational stage from the power system operation point of view leads the difference of this study compared to the mentioned studies. A categorization of the DLR implementation for either being sole or combined usage as a flexibility option is further realized. Besides, a geographically categorized analysis on existing practical evidence on DLR concept and implementations is also presented in this study.
Abstract:The recent popularity of alternative energy technologies is mainly promoted by the increasing awareness of environmental concerns as well as the economic impacts of the depleting fossil fuel reserves. Among several alternative technologies, wind-and solar-based energy have been given specific importance with government-based support for providing a cost-effective structure to realize better penetration of such environmentally friendly sources in the energy market. Even these sources are advantageous over the conventional means of energy production from many aspects, a main drawback being the total dependence on the meteorological conditions (wind speed, solar radiation, temperature, etc.) of the wind and solar systems, as they are not fully reliable to satisfy a particular load demand variation at each instant. Thus, some form of backup is always required that will shift the use of the energy from the moments of renewable-based nondispatchable production to the load demand-based dispatchable production. In this study, to ensure the supply of the load in all of the cases, an electrolyzer-fuel cell-based 'hydrogen regenerative' system is applied as main backup, together with a small-sized battery group to pick up transients. Thus, a hybrid structure including wind, solar, and hydrogen energy technologies is provided. The artificial neural network controller approach is selected for the hybrid system's energy management and its performance is examined and evaluated during different case studies that reflect the variations of the meteorological conditions in different seasons. It is aimed with this study to provide constructive suggestions to upcoming researchers interested in the energy management issue in hybrid systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.