Voltage-gated Na+ channels (VGSCs) are heteromeric proteins composed of pore-forming α subunits and smaller β subunits. The β subunits are multifunctional channel modulators and are members of the immunoglobulin superfamily of cell adhesion molecules (CAMs). β1, encoded by SCN1B, is best characterized in the central nervous system (CNS), where it plays a critical role in regulating electrical excitability, neurite outgrowth and migration during development. β1 is also expressed in breast cancer (BCa) cell lines, where it regulates adhesion and migration in vitro. In the present study, we found that SCN1B mRNA/β1 protein were up-regulated in BCa specimens, compared with normal breast tissue. β1 upregulation substantially increased tumour growth and metastasis in a xenograft model of BCa. β1 over-expression also increased vascularization and reduced apoptosis in the primary tumours, and β1 over-expressing tumour cells had an elongate morphology. In vitro, β1 potentiated outgrowth of processes from BCa cells co-cultured with fibroblasts, via trans-homophilic adhesion. β1-mediated process outgrowth in BCa cells required the presence and activity of fyn kinase, and Na+ current, thus replicating the mechanism by which β1 regulates neurite outgrowth in CNS neurons. We conclude that when present in breast tumours, β1 enhances pathological growth and cellular dissemination. This study is the first demonstration of a functional role for β1 in tumour growth and metastasis in vivo. We propose that β1 warrants further study as a potential biomarker and targeting β1-mediated adhesion interactions may have value as a novel anti-cancer therapy.
Voltage-gated Na+ channels (VGSCs) mediate action potential firing and regulate adhesion and migration in excitable cells. VGSCs are also expressed in cancer cells. In metastatic breast cancer (BCa) cells, the Nav1.5 α subunit potentiates migration and invasion. In addition, the VGSC-inhibiting antiepileptic drug phenytoin inhibits tumor growth and metastasis. However, the functional activity of Nav1.5 and its specific contribution to tumor progression in vivo has not been delineated. Here, we found that Nav1.5 is up-regulated at the protein level in BCa compared with matched normal breast tissue. Na+ current, reversibly blocked by tetrodotoxin, was retained in cancer cells in tumor tissue slices, thus directly confirming functional VGSC activity in vivo. Stable down-regulation of Nav1.5 expression significantly reduced tumor growth, local invasion into surrounding tissue, and metastasis to liver, lungs and spleen in an orthotopic BCa model. Nav1.5 down-regulation had no effect on cell proliferation or angiogenesis within the in tumors, but increased apoptosis. In vitro, Nav1.5 down-regulation altered cell morphology and reduced CD44 expression, suggesting that VGSC activity may regulate cellular invasion via the CD44-src-cortactin signaling axis. We conclude that Nav1.5 is functionally active in cancer cells in breast tumors, enhancing growth and metastatic dissemination. These findings support the notion that compounds targeting Nav1.5 may be useful for reducing metastasis.
Models considering breast cancer complexity cannot be easily or accurately replicated in routine cell line or animal models. We aimed to evaluate the practicality of organotypic tissue slice culture in breast cancer. Following ethical approval, 250 µm thick sections from surplus breast tumours (n=10) were prepared using a vibrating blade microtome. Triplicate tissue slices were placed in 6-well plates and cultured for up to 7 days ± tamoxifen (1 nM) or doxorubicin (1 µM). Tissue slices were fixed and embedded before sectioning for morphological evaluation and immunohistochemistry. H&E showed good preservation of tissue morphology. Collagen production was evident. Biomarkers of proliferation and apoptosis could be evaluated using immunohistochemistry and used as surrogates to quantify drug effects. In summary, breast cancer tissue slices can be cultured in vitro as organotypic models. Nevertheless, although simple in concept, the delicacy of the model with regard to handling makes subsequent analytical processes challenging.
Individual training and validation for digital primary diagnosis allows pathologists to develop competence and confidence in their digital diagnostic skills, and aids safe and responsible transition from the light microscope to the digital microscope.
The response of human epidermal growth factor receptor2 (HER2)- positive breast cancer (BC) patients to anti-HER2 targeted therapy is significant. However, the response is not uniform and a proportion of HER2-positive patients do not respond. This study aims to identify predictors of response in the neoadjuvant treatment and to assess the discordance rate of HER2 status between pre- and post-treatment specimens in HER2-positive BC patients. The study group comprised 500 BC patients treated with neoadjuvant chemotherapy (NACT) and/or neoadjuvant anti-HER2 therapy and surgery who had tumours that were 3+ or 2+ with HER2 immunohistochemistry (IHC). HER2 IHC 2+ tumours were classified into five groups by fluorescence in situ hybridisation (FISH) according to the 2018 ASCO/CAP guidelines of which Groups 1, 2 and 3 were considered HER2 amplified. Pathological complete response (pCR) was more frequent in HER2 IHC 3+ tumours than in HER2 IHC 2+/HER2 amplified tumours, when either in receipt of NACT alone (38% versus 13%; p = 0.22) or neoadjuvant anti-HER2 therapy (52% versus 20%; p < 0.001). Multivariate logistic regression analysis showed that HER2 IHC 3+ and histological grade 3 were independent predictors of pCR following neoadjuvant anti-HER2 therapy. In the HER2 IHC 2+/HER2 amplified tumours or ASCO/CAP FISH Group 1 alone, ER-negativity was an independent predictor of pCR following NACT and/or neoadjuvant anti-HER2 therapy. In the current study, 22% of HER2-positive tumours became HER2-negative by IHC and FISH following neoadjuvant treatment, the majority (74%) HER2 IHC 2+/HER2 amplified tumours. Repeat HER2 testing after neoadjuvant treatment should therefore be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.