PURPOSE.To determine whether in vitro expanded CD4 ϩ CD25 ϩ Foxp3 ϩ regulatory T cells can suppress immunemediated ocular surface inflammation in a mouse model of dry eye. METHODS. C57BL/6 or BALB/c mice were exposed to a dry, desiccating environment produced by maintaining low humidity (Ͻ40%), injections of scopolamine, and air flow produced by a fan. CD4 ϩ CD25 ϩ regulatory T cells were isolated and expanded in vitro in the presence of rmIL-2 and beads coated with anti-CD28 and anti-CD3. In vitro expanded regulatory T cells were phenotypically compared with freshly isolated regulatory T cells by flow cytometry and immunofluorescence. T-cell-deficient nude mice were reconstituted with CD4 ϩ Teffector cells from donor mice exposed to a desiccating environment for 5 days, in combination with or without freshly isolated or in vitro expanded regulatory T cells. Tear cytokine levels were determined by a multiplex bead-based immunoassay. RESULTS. In vitro regulatory T cells maintained normal levels of CD4 ϩ , CD25 ϩ , and intracellular Foxp3 ϩ , as determined by flow cytometry and immunohistochemistry. Freshly isolated and in vitro regulatory T cells were titrated in the presence of CD4 ϩ pathogenic T cells (CD4 ϩPath T cells) in reconstitution experiments and most efficiently ablated tear cytokine levels and conjunctival cellular infiltration at a ratio of 1:1 (T Regs: CD4 ϩPath ). CONCLUSIONS. Regulatory T cells expressed CD4 ϩ , CD25 ϩ , and intracellular Foxp3 ϩ at normal levels and retained their inhibitory function after in vitro expansion, providing a useful tool to determine the mechanism regulatory T cells use to sustain a homeostatic environment on the ocular surface. (Invest Ophthalmol Vis Sci. 2008;49:5434 -5440)
Skin ageing is a complex process involving both internal and external factors, which leads to a progressive loss of cutaneous function and structure. Solar radiation is the primary environmental factor implicated in the development of skin ageing, and the term photoaging describes the distinct clinical, histological and structural features of chronically sun-exposed skin. The changes that accompany photoaging are undesirable for aesthetic reasons and can compromise the skin and make it more susceptible to a number of dermatological disorders. As a result, skin ageing is a topic that is of growing interest and concern to the general population, illustrated by the increased demand for effective interventions that can prevent or ameliorate the clinical changes associated with aged skin. In this viewpoint essay, we explore the role that mitochondria play in the process of skin photoaging. There is continuing evidence supporting the proposal that mitochondrial dysfunction and oxidative stress are important contributing factors in the development of skin photoaging. Further skin-directed mitochondrial research is warranted to fully understand the impact of mitochondrial status and function in skin health. A greater understanding of the ageing process and the regulatory mechanisms involved could lead to the development of novel preventative interventions for skin ageing. K E Y W O R D Smitochondrial dysfunction, oxidative stress, photoaging, skin ageing
In more than 30% of B-cell precursor acute lymphoblastic leukaemia (B-ALL), chromosome 21 sequence is overrepresented through aneuploidy or structural rearrangements, exemplified by intrachromosomal amplification of chromosome 21 (iAMP21). Although frequent, the mechanisms by which these abnormalities promote B-ALL remain obscure. Intriguingly, we found copy number neutral loss of heterozygosity (CN-LOH) of 12q was recurrent in iAMP21-ALL, but never observed in B-ALL without some form of chromosome 21 gain. As a consequence of CN-LOH 12q, mutations or deletions of the adaptor protein, SH2B3, were converted to homozygosity. In patients without CN-LOH 12q, bi-allelic abnormalities of SH2B3 occurred, but only in iAMP21-ALL, giving an overall incidence of 18% in this sub-type. Review of published data confirmed a tight association between overrepresentation of chromosome 21 and both CN-LOH 12q and SH2B3 abnormalities in B-ALL. Despite relatively small patient numbers, preliminary analysis linked 12q abnormalities to poor outcome in iAMP21-ALL (p = 0.03). Homology modelling of a leukaemia-associated SH2 domain mutation and in vitro analysis of patient-derived xenograft cells implicated the JAK/STAT pathway as one likely target for SH2B3 tumour suppressor activity in iAMP21-ALL.
Intrachromosomal amplification of chromosome 21 is a heterogeneous chromosomal rearrangement occurring in 2% of cases of childhood precursor B-cell acute lymphoblastic leukemia. These abnormalities are too complex to engineer faithfully in animal models and are unrepresented in leukemia cell lines. As a resource for future functional and preclinical studies, we have created xenografts from the leukemic blasts of patients with intrachromosomal amplification of chromosome 21 and characterized them by in-vivo and ex-vivo luminescent imaging, flow immunophenotyping, and histological and ultrastructural analyses of bone marrow and the central nervous system. Investigation of up to three generations of xenografts revealed phenotypic evolution, branching genomic architecture and, compared with other B-cell acute lymphoblastic leukemia genetic subtypes, greater clonal diversity of leukemia-initiating cells. In support of intrachromosomal amplification of chromosome 21 as a primary genetic abnormality, it was always retained through generations of xenografts, although we also observed the first example of structural evolution of this rearrangement. Clonal segregation in xenografts revealed convergent evolution of different secondary genomic abnormalities implicating several known tumor suppressor genes and a region, containing the B-cell adaptor, PIK3AP1, and nuclear receptor co-repressor, LCOR, in the progression of B-cell acute lymphoblastic leukemia. Tracking of mutations in patients and derived xenografts provided evidence for co-operation between abnormalities activating the RAS pathway in B-cell acute lymphoblastic leukemia and for their aggressive clonal expansion in the xeno-environment. Bi-allelic loss of the CDKN2A/B locus was recurrently maintained or emergent in xenografts and also strongly selected as RNA sequencing demonstrated a complete absence of reads for genes associated with the deletions.
Intrinsic and extrinsic factors that induce cellular oxidative stress damage tissue integrity and promote ageing, resulting in accumulative strand breaks to the mitochondrial DNA (mtDNA) genome. Limited repair mechanisms and close proximity to superoxide generation make mtDNA a prominent biomarker of oxidative damage. Using human DNA we describe an optimised long-range qPCR methodology that sensitively detects mtDNA strand breaks relative to a suite of short mitochondrial and nuclear DNA housekeeping amplicons, which control for any variation in mtDNA copy number. An application is demonstrated by detecting 16-36-fold mtDNA damage in human skin cells induced by hydrogen peroxide and solar simulated radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.