An algorithm recently introduced by Breiman, Friedman, Olshen, and Stone in the context of classification and regression trees is reinterpreted and extended to cover a variety of applications in source coding and modeling in which trees are involved. These include variable-rate and minimum-entropy tree-structured vector quantization, minimum expected cost decision trees, variable-order Markov modeling, optimum bit allocation, and computer graphics and image processing using quadtrees. A concentration on the first of these and a detailed analysis of variable-rate tree-structured vector quantization are provided. We find that variable-rate tree-structured vector quantization outperforms not only the fixed-rate variety but also full-search vector quantization as well. Furthermore, the "successive approximation" character of variable-rate tree-structured vector quantization permits it to degrade gracefully if the rate is reduced at the encoder. This has applications to the problem of buffer overflow.
Abstract-When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees, and it leads to decision-making dynamics of the swarm that are remarkably robust to perturbation and adaptive to change. To explore and generalize these features to other networks, we design distributed multi-agent network dynamics that exhibit a pitchfork bifurcation, ubiquitous in biological models of decisionmaking. Using tools of nonlinear dynamics we show how the designed agent-based dynamics recover the high performing value-sensitive decision-making of the honeybees and rigorously connect investigation of mechanisms of animal group decisionmaking to systematic, bio-inspired control of multi-agent network systems. We further present a distributed adaptive bifurcation control law and prove how it enhances the network decisionmaking performance beyond that observed in swarms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.