Since the first report of a new pneumonia disease in December 2019 (Wuhan, China) the WHO reported more than 148 million confirmed cases and 3.1 million losses globally up to now. The causative agent of COVID-19 (SARS-CoV-2) has spread worldwide, resulting in a pandemic of unprecedented magnitude. To date, several clinically safe and efficient vaccines (e.g., Pfizer-BioNTech, Moderna, Johnson & Johnson, and AstraZeneca COVID-19 vaccines) as well as drugs for emergency use have been approved. However, increasing numbers of SARS-Cov-2 variants make it imminent to identify an alternative way to treat SARS-CoV-2 infections. A well-known strategy to identify molecules with inhibitory potential against SARS-CoV-2 proteins is repurposing clinically developed drugs, e.g., antiparasitic drugs. The results described in this study demonstrated the inhibitory potential of quinacrine and suramin against SARS-CoV-2 main protease (3CLpro). Quinacrine and suramin molecules presented a competitive and noncompetitive inhibition mode, respectively, with IC50 values in the low micromolar range. Surface plasmon resonance (SPR) experiments demonstrated that quinacrine and suramin alone possessed a moderate or weak affinity with SARS-CoV-2 3CLpro but suramin binding increased quinacrine interaction by around a factor of eight. Using docking and molecular dynamics simulations, we identified a possible binding mode and the amino acids involved in these interactions. Our results suggested that suramin, in combination with quinacrine, showed promising synergistic efficacy to inhibit SARS-CoV-2 3CLpro. We suppose that the identification of effective, synergistic drug combinations could lead to the design of better treatments for the COVID-19 disease and repurposable drug candidates offer fast therapeutic breakthroughs, mainly in a pandemic moment.
BackgroundCorynebacterium pseudotuberculosis, a facultative intracellular bacterial pathogen, is the etiological agent of caseous lymphadenitis (CLA), an infectious disease that affects sheep and goats and it is responsible for significant economic losses. The disease is characterized mainly by bacteria-induced caseous necrosis in lymphatic glands. New vaccines are needed for reliable control and management of CLA. Thus, the putative virulence factors SpaC, SodC, NanH, and PknG from C. pseudotuberculosis FRC41 may represent new target proteins for vaccine development and pathogenicity studies.ResultsSpaC, PknG and NanH presented better vaccine potential than SodC after in silico analyses. A total of 136 B and T cell epitopes were predicted from the four putative virulence factors. A cluster analysis was performed to evaluate the redundancy degree among the sequences of the predicted epitopes; 57 clusters were formed, most of them (34) were single clusters. Two clusters from PknG and one from SpaC grouped epitopes for B and T-cell (MHC I and II). These epitopes can thus potentially stimulate a complete immune response (humoral and cellular) against C. pseudotuberculosis. Several other clusters, including two from NanH, grouped B-cell epitopes with either MHC I or II epitopes. The four target proteins were expressed in Escherichia coli. A purification protocol was developed for PknG expression.ConclusionsIn silico analyses show that the putative virulence factors SpaC, PknG and NanH present good potential for CLA vaccine development. Target proteins were successfully expressed in E. coli. A protocol for PknG purification is described.Electronic supplementary materialThe online version of this article (doi:10.1186/s12934-016-0479-6) contains supplementary material, which is available to authorized users.
The potential outcome of flavivirus and alphavirus co-infections is worrisome due to the development of severe diseases. Hundreds of millions of people worldwide live under the risk of infections caused by viruses like chikungunya virus (CHIKV, genus Alphavirus), dengue virus (DENV, genus Flavivirus), and zika virus (ZIKV, genus Flavivirus). So far, neither any drug exists against the infection by a single virus, nor against co-infection. The results described in our study demonstrate the inhibitory potential of two flavonoids derived from citrus plants: Hesperetin (HST) against NS2B/NS3pro of ZIKV and nsP2pro of CHIKV and, Hesperidin (HSD) against nsP2pro of CHIKV. The flavonoids are noncompetitive inhibitors and the determined IC50 values are in low µM range for HST against ZIKV NS2B/NS3pro (12.6 ± 1.3 µM) and against CHIKV nsP2pro (2.5 ± 0.4 µM). The IC50 for HSD against CHIKV nsP2pro was 7.1 ± 1.1 µM. The calculated ligand efficiencies for HST were > 0.3, which reflect its potential to be used as a lead compound. Docking and molecular dynamics simulations display the effect of HST and HSD on the protease 3D models of CHIKV and ZIKV. Conformational changes after ligand binding and their effect on the substrate-binding pocket of the proteases were investigated. Additionally, MTT assays demonstrated a very low cytotoxicity of both the molecules. Based on our results, we assume that HST comprise a chemical structure that serves as a starting point molecule to develop a potent inhibitor to combat CHIKV and ZIKV co-infections by inhibiting the virus proteases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.