ABSTRACT. The diagonal of the product of two triangular matrices is the product of the diagonals of each matrix. This idea is used to characterize partially ordered linear algebras which have order properties similar to an algebra of real triangular matrices.
The martingale convergence theorem was first proved by Doob (3) who considered a sequence of real-valued random variables. Since various collections of real-valued random variables can be regarded as vector lattices, it seems of interest to prove the martingale convergence theorem in an arbitrary vector lattice. In doing so we use the concept of order convergence that is related to convergence almost everywhere, the type of convergence used in Doob's theorem.
In this paper, we consider linear spaces and algebras with real scalars. It is well known that if X is a Banach space and is the set of all bounded linear operators which map X into itself, then is a Banach algebra. In this paper we shall show that can be partially ordered so that it becomes a partially ordered algebra in which norm convergence is equivalent to order convergence. This motivates a study of Banach algebras of operators in which one uses the order structure to obtain various results. In addition, it encourages a study of partially ordered algebras in general, since our result shows that among such algebras one finds all real Banach algebras of operators. Of course, there are many other real algebras which are naturally partially ordered and which have been studied from that point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.