Realistic structural analyses and optimisations using the non-linear finite element method are possible today yet suffer from being very time-consuming, particularly in case of reinforced concrete plates and shells. Hence such investigations are currently dismissed in the vast majority of cases in practice. The "Artificial Intelligence - Finite Element - Hybrids" project addresses the current unsatisfactory situation with an approach that combines non-linear finite element models for reinforced concrete shells with scientific machine learning algorithms to create hybrid AI-FEM models. The AI-based surrogate material model provides the material stiffness as well as the stress tensor for given concrete design parameters and the strain tensor. This paper reports on the current status of the project and findings of the calibration of the AI-based reinforced concrete material model. We successfully calibrated and evaluated k-nearest-neighbour, LGBM and ResNet algorithms and report their predictive capabilities. Finally, some light is shed on the future work of integrating the AI surrogate material models back into the finite element method in the course of the numerical analysis of reinforced concrete structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.