Objective: The major objective of the research work was to design, characterise and evaluate controlled release microspheres of ropinirole hydrochloride by using non-aqueous solvent evaporation technique to facilitate the delivery of the drug at a predetermined rate for a specific period of time.Methods: Ropinirole hydrochloride microspheres were prepared by using different low-density polymers such as eudragit RL 100, eudragit RS 100 and ethylcellulose either alone or in combination with the help of non-aqueous solvent evaporation technique. All the formulated microparticles were subjected to various evaluation parameters such as particle size analysis, micrometric properties, drug entrapment efficiency, percentage drug loading, percentage yield and in vitro drug release study. The compatibility of the drug and polymers was confirmed by physical compatibility study, fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and x-ray diffraction study (XRD). The formation of the most optimized batch of the microsphere (F12) was confirmed by scanning electron microscopy (SEM), DSC, FTIR, and XRD. In vitro drug release study and in vitro drug release kinetics study of the formulated microspheres were also carried out.Results: Drug-polymer compatibility studies performed with the help of FTIR and DSC indicated that there were no interactions. Results revealed that non-aqueous solvent evaporation technique was a suitable technique for the preparation of microspheres as most of the formulations were discrete, free-flowing and spherical in shape with a good yield of 55.67% to 80.09%, percentage drug loading of 35.52% to 94.50% and percentage drug entrapment efficiency of 36.24% to 95.07%. Different drug-polymer ratios, as well as the combination of polymers, played a significant role in the variation of over-all characteristics of formulations. Based on the data of various evaluation parameters such as particle size analysis, percentage drug loading, percentage drug entrapment, percentage yield, rheological studies and in vitro drug release characteristics, formulation F12 was found to fulfil the criteria of ideal controlled release drug delivery system. F12 showed controlled release till the 14th hour (97.99%) and its in vitro release kinetics was best explained by zero-order kinetics and followed Korsemeyer-Pappas model (Non-Fickian mechanism). SEM of F12 revealed the formation of spherical structures. The FTIR study of F12 confirmed the stable nature of ropinirole in the drug-loaded microspheres. DSC and XRD patterns showed that ropinirole hydrochloride was dispersed at the molecular level in the polymer matrix.Conclusion: The controlled release microparticles were successfully prepared and from this study, it was concluded that the developed microspheres of ropinirole hydrochloride can be used for controlled drug release to improve the bioavailability and patient compliance and to maintain a constant drug level in the blood target tissue by releasing the drug in zero order pattern.
Background: The aim of the present investigation was to improve comprehensive analytical method for the assessment of satranidazole in drug and product with simple, economic, sensitive, and reproducible spectrophotometric method. The drug was analyzed in three different methods by using various solvents where satranidazole (STZ) showed different absorbance maxima (s) and sharp peaks in the first order derivative spectra. Beer's law range, correlation coefficient, apparent molar absorptivity, etc., were determined for each solvent using all the three methods. Results: All the results of analysis were found to be satisfactory which was validated statistically for various parameters and by performing recovery studies in accordance with international conference on harmonization (ICH) guidelines. The developed methods were also compared statistically using one way analysis of variance (ANOVA). Conclusion: Three different spectrophotometric methods were developed for satranidazole (STZ) using various inorganic and organic solvents. The analytical methods are found to be simple, sensitive, rapid, specific, and economic, and it can be conveniently employed for the routine analysis, quality control. The sample recoveries from the formulation were in good agreement with its respective label claim.
Background The purpose of the present study was to evaluate layered of satranidazole powder using natural polysaccharides as coating materials for colon targeting that were inexpensive and natural with a non-toxic nature using a composite response design of 3 levels and 2 factors for each of the four responses in the quadratic model. The independent variables were the ratio of coating consistency % (X1) and coating level % (X2) in the pellet. The dependent factors were % release of drug at 2 h. (Y1), % release of drug at 6 h. (Y2), % release of drug difference in presence & absence of colonic enzyme (Y3) and mean dissolution time (Y4). The various models were fitted for the responses with an explanation of suitable statistical methods. Variance analysis and different factor levels of responses were constructed by response surface plots. Results Satranidazole pellets were efficiently prepared by the variable amount of ingredients that showed compatibility with possible pellet characterization and drug dissolution profiles to optimize the formulation. Conclusions The strategy of response surface can be a successful tool for improving the prepared satranidazole pellets which can be an appropriate replacement of regular one.
Objective: The objective of the present work was to conduct accelerated stability study as per international council for harmonisation (ICH) guidelines and to establish shelf life of controlled release dosage form of ropinirole hydrochloride and pramipexole dihydrochloride microspheres for a period of 6 mo.Methods: Most optimized batch of ropinirole hydrochloride and pramipexole dihydrochloride (F12 and M12 respectively) were selected and subjected to exhaustive stability testing by keeping the sample in stability oven for a period of 3 and 6 mo. Various parameters like surface morphology, particle size, drug content, in vitro drug release and shelf life were evaluated at 3 and 6 mo period. The surface morphology of the formulated microspheres was determined by scanning electron microscopy (SEM). The particle size of the microspheres was estimated by optical microscopy method. The drug content was assayed by the help of ultra-violet spectrophotometer (UV). The in vitro drug release was performed by using Paddle II type dissolution apparatus and the filtrate was analyzed by UV spectrophotometer. The shelf life of the optimized microspheres was calculated by using the rate constant value of the zero-order reaction.Results: A minor change was recorded in average particle size of F12 and M12 microspheres after storage for 6 mo. For F12 and M12, initially the particle size was 130.00 µm and 128.92 µm respectively and after 6 mo it was found to be 130.92 µm and 128.99 µm respectively. There was no change in surface morphology of F12 and M12 microspheres after 6 mo of storage. The shape of microspheres remained spherical and smooth after 6 mo. An insignificant difference of drug content was recorded after 6 mo compared to the freshly prepared formulation. For F12 and M12, 94.50% and 93.77% of the drug was present initially and after 6 mo 94.45% and 93.72% of the drug was recorded. In vitro drug release was recorded after 6 mo for F12 and M12. Initially, 97.99% and 97.69% of the drug was released till 14th hour respectively for F12 and M12. After 6 mo, 98.23% and 97.99% of the drug was released respectively. The percentage residual drug content revealed that the degradation of microspheres was low. Considering the initial percentage residual drug content as 100%, 99.94% of the drug was recorded for both F12 and M12. The shelf life for F12 and M12 was found to be 10 y 52 d and 10 y 70 d respectively which were determined by the zero-order kinetic equation. Conclusion:A more or less similar surface morphology, particle size, drug content and percent of drug release before and after stability study confirmed the stability of F12 and M12 microspheres after storage for 6 mo and prove the efficacy of the microspheres in the site-specific delivery of drugs in Parkinson's disease.
Background The colon has a significant site to deliver numerous active materials for colonic diseases. Highly biodegradable polymers hold significant promise among the several techniques available to deliver the drug to the colon. This research aimed to prepare chitosan, locust bean gum and xanthan gum polysaccharide composite satranidazole multiunit pellets for colonic release and assesses the bioavailability with pharmacokinetic parameters after administration of satranidazole raw drug compared to multiunit pellets. Satranidazole multiple unit pellets were prepared based on chitosan, locust bean gum and xanthan gum, which were inexpensive and harmless. The bioavailability study was done by crossover design in which satranidazole raw drug and test formulation was administered to six healthy white albino rats. Results The pharmacokinetic analyses were estimated using the deconvolution of the plasma profile. Compared to the satranidazole drug used as a reference, for the pellets, the maximum plasma concentration was lower (35.02 ± 3.91 ng/ml vs. 51.07 ± 1.21 ng/ml for the satranidazole drug), and the time to attain maximum concentration was 2.50 ± 0.55 h for both drugs and test formulation. Colonic drug content was significantly higher than that of free administered drug. Conclusion The results indicate the acquired pharmacokinetic studies and colonic analysis established the reliability of the pharmaceutical technique and the ability to release satranidazole at the colonic site. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.