Parallel robots are nowadays used in many high-precision tasks. The dynamics of parallel robots is naturally more complex than the dynamics of serial robots, due to their kinematic structure composed by closed chains. In addition, their current high-precision applications demand the innovation of more effective and robust motion controllers. This has motivated researchers to propose novel and more robust controllers that can perform the motion control tasks of these manipulators. In this article, a two-loop proportional–proportional integral controller for trajectory tracking control of parallel robots is proposed. In the proposed scheme, the gains of the proportional integral control loop are constant, while the gains of the proportional control loop are online tuned by a novel self-organizing fuzzy algorithm. This algorithm generates a performance index of the overall controller based on the past and the current tracking error. Such a performance index is then used to modify some parameters of fuzzy membership functions, which are part of a fuzzy inference engine. This fuzzy engine receives, in turn, the tracking error as input and produces an increment (positive or negative) to the current gain. The stability analysis of the closed-loop system of the proposed controller applied to the model of a parallel manipulator is carried on, which results in the uniform ultimate boundedness of the solutions of the closed-loop system. Moreover, the stability analysis developed for proportional–proportional integral variable gains schemes is valid not only when using a self-organizing fuzzy algorithm for gain-tuning but also with other gain-tuning algorithms, only providing that the produced gains meet the criterion for boundedness of the solutions. Furthermore, the superior performance of the proposed controller is validated by numerical simulations of its application to the model of a planar three-degree-of-freedom parallel robot. The results of numerical simulations of a proportional integral derivative controller and a fuzzy-tuned proportional derivative controller applied to the model of the robot are also obtained for comparison purposes.
In this paper, we present the design and implementation of two nonlinear observers: nonlinear extended state observer and sliding mode observer for estimating the pitch, yaw and roll angles and angular rates of a fixed-wing unmanned aerial vehicles system under a decoupled-reduced model in real flight experiments. A backstepping control law is designed for control in a decentralized way for altitude, yaw and roll of the airplane. This scheme allows us to test experimentally the feasibility of using the online estimated data from the observers in flight control, which is useful for increasing the robustness of the control and the safety of flight. Furthermore, a comparative analysis of the performance of both nonlinear observers is conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.