Magnetohydrodynamics (MHD) boundary layer flow past a wedge with the influence of thermal radiation, heat generation and chemical reaction has been analyzed in the present study. This model used for the momentum, temperature and concentration fields. The principal governing equations is based on the velocity in a nanofluid and with a parallel free stream velocity and surface temperature and concentration. The governing nonlinear boundary layer equations for momentum, thermal energy and concentration are transformed to a system of nonlinear ordinary coupled differential equations by using suitable similarity transformation with fitting boundary conditions. The transmuted model is shown to be controlled by a number of thermo-physical parameters, viz. the magnetic parameter, buoyancy parameter, radiation conduction parameter, heat generation parameter, Porosity parameter, Dufour number, Prandtl number, Lewis number, Brownian motion parameter, thermophoresis parameter, chemical reaction parameter and pressure gradient parameter. Numerical elucidations are obtained with the legendary Nactsheim-Swigert shooting technique together with RungeKutta six order iteration schemes.
In many chemical engineering processes, a chemical reaction between a foreign mass and the fluid does occur. These processes find relevance in polymer production, oxidation of solid materials, ceramics or glassware manufacturing, tubular reactors, food processing, and synthesis of ceramic materials. Therefore, an exploration of homogeneous first-order chemical reaction effects on heat and mass transfer along with entropy analysis of Jeffrey liquid flow towards a stretched isothermal porous sheet is performed. Fluid is conducting electrically in the company of transverse magnetic field. Variations in heat and mass transfer mechanisms are accounted in the presence of viscous dissipation, heat source/sink and cross-diffusion aspects. The partial differential equations system governing the heat transfer of Jeffery liquid is reformed to the ordinary differential system through relevant transformations. Numerical solutions based on Runge-Kutta shooting method are obtained for the subsequent nonlinear problem. A parametric exploration is conducted to reveal the tendency of the solutions. The present study reveals that the Lorentz force due to magnetism can be used as a key parameter to control the flow fields. Entropy number is larger for higher values of Deborah and Brinkman numbers. It is also established that the concentration species field and its layer thickness of the Jeffery liquid decreases for a stronger chemical reaction aspect. To comprehend the legitimacy of numerical results a comparison with the existing results is made in this exploration and alleged an admirable agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.