Waste in the food industry is characterized by a high ratio of product-specific waste. Not only does this mean that the generation of this waste is unavoidable, but also that the amount and kind of waste produced, which consists primarily of the organic residue of processed raw materials, can scarcely be altered if the quality of the finished product is to remain consistent. The utilization and disposal of product-specific waste is difficult, due to its inadequate biological stability, potentially pathogenic nature, high water content, potential for rapid autoxidation, and high level of enzymatic activity. The diverse types of waste generated by various branches of the food industry can be quantified based on each branches' respective level of production. Moreover; the origins of each type of waste and a tabulated overview of the traditional agricultural methods for reusing the waste are discussed. Additionally, alternative methods of waste management have emerged, which target the most important contents of the waste. In conclusion, new possibilities for the utilization of food industry waste are described.
The research on high hydrostatic pressure in medicine and life sciences is multifaceted. According to the used pressure head the research has to be divided into two different parts. To study physiological aspects of pressure on eukaryotic cells physiological pressure (pHHP; < 100 MPa) is used. pHHP induces morphological alterations in the cellular organelles and evokes a reversible stress response similar to the well known heat shock response. pHHP induces highly reversible alterations and normally does not affect cellular viability. The treatment of eukaryotic cells with non-physiological pressure (HHP; > or = 100 MPa) reveals different outcomes. Treatment with HHP < 150 MPa does not markedly affect viability of human cells, but induces apoptosis in murine cells. In human cells apoptosis is observed after treatment with > or = 200 MPa. Moreover, HHP treatment with > 300 MPa leads to necrosis. Therefore, HHP plays a role for the sterilisation of human transplants, of food stuff, and pharmaceuticals. Human tumour cells subjected to HHP > 300 MPa display a necrotic phenotype along with a gelificated cytoplasm, preserve their shape, and retain their immunogenicity. These observations favour the use of HHP to produce whole cell based tumour vaccines. Further experiments revealed that the increment of pressure as well as the pressure holding time influences the cell death of tumour cells. We conclude that high hydrostatic pressure offers both, an economic, easy to apply, clean, and fast technique for the generation of vaccines, and a promising tool to study physiological aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.