In this article, we investigate the next-to-leading order contribution of the higher-twist Feynman diagrams to the large-p T inclusive pion production cross section in proton-proton collisions and present the general formulae for the higher-twist differential cross sections in the case of the running coupling and frozen coupling approaches. We compared the resummed next-to-leading order highertwist cross sections with the ones obtained in the framework of the frozen coupling approach and leading-twist cross section. The structure of infrared renormalon singularities of the higher twist subprocess cross section and it's resummed expression (the Borel sum) are found. It is shown that the resummed result depends on the choice of the meson wave functions used in the calculations.We discuss the phenomenological consequences of possible higher-twist contributions to the meson production in proton-proton collisions in next-to-leading order at RHIC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.