Multi-tool turning process employs more than one cutting tool for machining the work piece simultaneously. In the conventional turning process, effect of machining parameters over cutting forces, vibration, work piece surface finish and dimensional tolerances have been discussed in detail, however no attempt has been made in the multi-tool turning process. Cutting tool vibration is very important as it reveals the condition of cutting tool as well as work piece quality. In this study, a second cutting tool is introduced at the rear side of the lathe with some distance from conventional front cutting tool to machine the work piece simultaneously. Accelerometers are used to measure the vibration signals in the tangential direction of cutting. Obtained time domain vibration signals are converted to frequency domain signals by Fast Fourier Transform to reveal its power spectral density. In this work cutting speed and distance between front and rear cutting tool are varied to understand the cutting tool vibration. With increase in cutting speed and increase in distance between front and rear cutting tool, vibration reduces.
Productivity enhancement assumes a paramount importance in today’s competitive industrial world. The aim of this work is to improve productivity in a conventional lathe with two single point cutting tools machining a workpiece simultaneously. An additional tool holding fixture is fabricated and integrated so that distance between the two cutting tools can be varied and has a provision to provide individual depth of cut. Experiments were performed on gray cast iron workpiece at different offset distances between the cutting tools, at a particular cutting speed, feed rate and depth of cut. In the multi-tool turning process, lagging rear cutting tool experiences lesser cutting force than leading front cutting tool. This behaviour is due to the machining of front cutting tool preheat as well as reduction of effective cutting speed while machining with rear cutting tool. With increase in offset distance, moment acting on the work piece contributes to increase in resistance against machining and hence front tool experiences higher force than rear cutting tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.