Deposition, erosion, and corrosion (DEC) experiments were conducted using three coal-water fuels (CWF) in a staged subscale turbine combustor operated at conditions of a recuperated turbine. This rich-quench-lean (RQL) combustor appears promising for reducing NOx levels to acceptable levels for future turbines operating with CWF. Specimens were exposed in two test sections to the combustion products from the RQL combustor. The gas and most surface temperatures in the first and second test sections represented temperatures in the first stators and rotors, respectively, of a recuperated turbine. The test results indicate deposition is affected substantially by gas temperature, surface temperature, and unburned carbon due to incomplete combustion. The high rates of deposition observed at first stator conditions showed the need for additional tests to identify CWF coals with lower deposition tendencies and to explore deposition control measures such as hot gas cleanup.
Deposition, erosion, and corrosion (DEC) experiments were conducted using three coal-water fuels (CWF) in a staged subscale turbine combustor operated at conditions of a recuperated turbine. This rich-quench-lean (RQL) combustor appears promising for reducing NOx levels to acceptable levels for future turbines operating with CWF. Specimens were exposed in two test sections to the combustion products from the RQL combustor. The gas and most surface temperatures in the first and second test sections represented temperatures in the first stators and rotors, respectively, of a recuperated turbine. The test results indicate deposition is affected substantially by gas temperature, surface temperature, and unburned carbon due to incomplete combustion. The high rates of deposition observed at first stator conditions showed the need for additional tests to identify CWF coals with lower deposition tendencies and to explore deposition control measures such as hot gas cleanup.
Full application of 2D boundary layer calculations for heat transfer predictions during turbine vane design still awaits verification against relevant data. Although there are a few data sets in the literature, there is a definite need for basic vane heat transfer data under conditions that fully simulate the aerodynamic and thermal conditions of a modern turbine. Accordingly, an experiment was performed to obtain the local heat transfer distribution on a typical engine vane in an aerothermodynamic cascade facility. Heat transfer data were obtained for a range of Mach and Reynolds numbers. The cascade was closely coupled behind the facility burner so that the test included the effects of high free-stream turbulence. Turbulence data were obtained by LDV and are included.
A staged, subscale turbine combustor based on a promising rich-quench-lean combustor approach to reduce NOX emissions was used to evaluate deposition, erosion, and corrosion (DEC) from coal-water fuels (CWF). This combustor was operated with three CWF at conditions of a recuperated turbine. Specimens were exposed in two test sections at temperature conditions of the first stator vanes and first rotor blades of the recuperated turbine. Resulting deposits were chemically analyzed. Deposit covered segments of specimens were placed in a furnace to extend their exposure to the potentially corrosive deposits. The deposits produced at higher temperature first stator conditions differed significantly from those produced at lower temperature first rotor conditions. The rates of formation of the higher temperature deposits were high and the deposit chemistries were similar to the coal ash chemistry. The rates of formation of the lower temperature deposits were one to two orders of magnitude less and deposit chemistries were not the same as the coal ash chemistry. Some corrosion of a CoCrAlY coating was detected after a few hours of exposure in the DEC tests. Corrosion penetration up to one-half of the coating thickness was observed after an additional 460 hr furnace exposure. Much more testing is needed to explore whether the deposition and corrosion produced by the fuels evaluated are typical of this fuel form and to assess benefits of alternate turbine protection measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.