Economic model predictive control (EMPC) has attracted significant attention in recent years and is recognized as a promising advanced process control method for next‐generation smart manufacturing. It has the potential to not only improve economic performance but also significantly increase computational complexity. Model approximation has been a standard approach for reducing computational complexity in process control. In this work, we perform a study on three types of representative model approximation methods applied to EMPC, including model reduction based on available first‐principle models (e.g., proper orthogonal decomposition), system identification based on input–output data (e.g., subspace identification) that results in an explicitly expressed mathematical model, and neural networks based on input–output data. A representative algorithm from each model approximation method is considered. Two processes that are very different in dynamic nature and complexity were selected as benchmark processes for computational complexity and economic performance comparison, namely, an alkylation process and a wastewater treatment plant. The strengths and drawbacks of each method are summarized according to the simulation results, with future research direction regarding control‐oriented model approximation proposed at the end.
Economic model predictive control (EMPC) has attracted significant attention in recent years and is recognized as a promising advanced process control method for the next generation smart manufacturing. It can lead to improving economic performance but at the same time increases the computational complexity significantly. Model approximation has been a standard approach for reducing computational complexity in process control. In this work, we perform a study on three types of representative model approximation methods applied to EMPC, including model reduction based on available first-principle models (e.g., proper orthogonal decomposition), system identification based on input-output data (e.g., subspace identification) that results in an explicitly expressed mathematical model, and neural networks based on input-output data. A representative algorithm from each model approximation method is considered. Two processes that are very different in dynamic nature and complexity were selected as benchmark processes for computational complexity and economic performance comparison, namely an alkylation process and a wastewater treatment plant (WWTP). The strengths and drawbacks of each method are summarized according to the simulation results, with future research direction regarding control oriented model approximation proposed at the end. * Both Zhiyinan Huang and Qinyao Liu are co-first authors and have contributed equally to the work. Qinyao Liu focused more on traditional model approximation and identification while Zhiyinan Huang focused more on explicitly-expressed neural network and optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.