A systematic experimental and theoretical investigation of the elastic and failure properties of ZnO nanowires (NWs) under different loading modes has been carried out. In situ scanning electron microscopy (SEM) tension and buckling tests on single ZnO NWs along the polar direction [0001] were conducted. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The bending modulus increased more rapidly than the tensile modulus, which demonstrates that the elasticity size effects in ZnO NWs are mainly due to surface stiffening. Two models based on continuum mechanics were able to fit the experimental data very well. The tension experiments showed that fracture strain and strength of ZnO NWs increased as the NW diameter decreased. The excellent resilience of ZnO NWs is advantageous for their applications in nanoscale actuation, sensing, and energy conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.