A novel unsupervised blind image quality assessment (BIQA) method, which requires no mean opinion scores for model training is presented in this paper. The method employs joint spatial and transform features as quality degradation metrics, specifically, phase congruency, gradient magnitude (GM), and GM and Laplacian of Gaussian response and local normalized coefficient are extracted as spatial features, and Karhunen–Loéve transform coefficient and discrete cosine transform coefficient are modeled as transform features. Both spatial and transform features are well analyzed to remove the redundancy, and then fitted to the multivariate Gaussian model for no-reference image quality assessment. Extensive experiments conducted on seven IQA databases demonstrate the superiority of the proposed method over the state-of-the-art both supervised and unsupervised BIQA methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.