Diverse pectinolytic enzymes are widely applied in the food, papermaking, and other industries, and they account for more than 25% of the global industrial enzyme demands. Efficient lignocellulose degradation microbiota are reservoirs of pectinolytic enzymes and other lignocellulose-degrading genes. Metagenomics has been widely used to discover new pectinolytic enzymes. Here, we used a metagenomic strategy to characterize pectinolytic genes from one efficient lignocellulose-degrading microbiota derived from pulp and paper wastewater treatment microbiota. A total of 23 predicted full-length GH28 and PL1 family pectinolytic genes were selectively cloned and expressed in Escherichia coli, and 5 of the expressed proteins had pectinolytic activities. Among them, the characterization of one pectinolytic enzyme, PW-pGH28-3, which has a 58.4% identity with an exo-polygalacturonase gene of Aquipluma nitroreducens, was further investigated. The optimal pH and optimal temperature of PW-pGH28-3 were 8.0 and 40 °C, respectively, and its pectinolytic activity at the optimal condition was 13.5 ± 1.1 U/mg protein. Bioinformatics analyses and structural modeling suggest that PW-pGH28-3 is a novel secretory exo-polygalacturonase, which is confirmed by its hydrolysates of polygalacturonic acid. The detection of PW-pGH28-3 and other pectinolytic genes showed that efficient lignocellulose degradation microbiota could provide potential efficient pectinolytic enzymes for industrial application. In the future, improving metagenomic screening efficiency would discover efficient lignocellulose-degrading enzymes and lead to the sustainable and green utilization of lignocellulose.
Chinese herbal medicines (CHM) have been used to cure diseases for thousands of years. However, the bioactive ingredients of CHM are complex, and some CHM natural products cannot be directly absorbed by humans and animals. Moreover, the contents of most bioactive ingredients in CHM are low, and some natural products are toxic to humans and animals. Fermentation of CHM could enhance CHM bioactivities and decrease the potential toxicities. The compositions and functions of the microorganisms play essential roles in CHM fermentation, which can affect the fermentation metabolites and pharmaceutical activities of the final fermentation products. During CHM fermentation, probiotics not only increase the contents of bioactive natural products, but also are beneficial for the host gut microbiota and immune system. This review summarizes the advantages of fermentation of CHM using probiotics, fermentation techniques, probiotic strains, and future development for CHM fermentation. Cutting‐edge microbiome and synthetic biology tools would harness microbial cell factories to produce large amounts of bioactive natural products derived from CHM with low‐cost, which would help speed up modern CHM biomanufacturing.
The use of traditional chemical insecticides for pest control often leads to environmental pollution and a decrease in biodiversity. Recently, insect sex pheromones were applied for sustainable biocontrol of pests in fields, due to their limited adverse impacts on biodiversity and food safety compared to that of other conventional insecticides. However, the structures of insect pheromones are complex, and their chemical synthesis is not commercially feasible. As yeasts have been widely used for fatty acid-derived pheromone production in the past few years, using engineered yeasts may be promising and sustainable for the low-cost production of fatty acid-derived pheromones. The primary fatty acids produced by Saccharomyces cerevisiae and other yeasts are C16 and C18, and it is also possible to rewire/reprogram the metabolic flux for other fatty acids or fatty acid derivatives. This review summarizes the fatty acid biosynthetic pathway in S. cerevisiae and recent progress in yeast engineering in terms of metabolic engineering and synthetic biology strategies to produce insect pheromones. In the future, insect pheromones produced by yeasts might provide an eco-friendly pest control method in agricultural fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.