Although separation of single-walled carbon nanotubes (SWCNTs) according to their helicity and handedness has been attracting tremendous interest recently, exploration of the left-and right-handed SWCNT enantiomers (defined as "M" and "P") to chiral sensing still remains in the early stage. Here we presented a new electrochemical sensor for chiral discrimination, which for the first time amplified the chiral selection on the electrode surface based on the left-or right-handed semiconducting SWCNT enantiomers with (6,5)-enriched chirality. The enantioselectivity was demonstrated by different peak current response to analyte enantiomers, observed in differential pulse voltammogram (DPV). Chiral distinguishing might be a result of the formation of an efficient chiral nanospace originating from the high purity of single enantiomer of (6,5) SWCNT. The obtained chiral electrodes were also applied to determine the enantiomeric excess (ee) of DOPA. There was a good linear relationship between DPV peak currents and % ee of L-DOPA. This study is the first example showing how the structure of chiral SWCNTs influences electrochemical chiral recognition.
Metal−organic frameworks (MOFs) have been attracting a great attention for application in electrolytes. Benefiting from the controllable chemical composition, tunable pore structure and surface functionality, MOFs offer great opportunities for...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.