Herein, self-assembled π-conjugated systems derived from renewable resource are reported as a probe for intra-cellular imaging and an anti-proliferative agent for PC3 cells.
Although acute wounds are common, treatment for a scarless condition remains limited and ineffective as medicated dressings act only as an epidermal coverage and no interdermal interactions happen. This study examined the benefit of Acalypha indica, a traditionally acclaimed plant for wound healing, as a three-dimensional nanofibrous dressing. guar gum, a natural polysaccharide, was chosen as the raw material, in combination with a synthetic copolymer polyvinyl alcohol. A series of polymer blend nanofibers made of 3:7 of 1% wt guar and 10% wt polyvinyl alcohol along with varied ratios of A. indica were prepared using electrospinning. The effect of cross-linking by citric acid on the nanofibers was studied using Fourier transform infrared. A 5% wt A. indica content was optimized in the electrospun solution to get nanosized morphology, roughness, water absorbing capacity, thermal stability, and tensile strength. The composite material was found inhibitory to both Gram-positive and Gram-negative strains as measured by zone of inhibition. The ability of the dressing to support and proliferate human dermal fibroblasts was evaluated by cell proliferation assay and Calcein acetomethyl (AM) staining assay. The results confirmed that the composite dressing could support long-term cell growth in the 9-day cell culture study. The incorporation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.