Despite decades of research, tuberculosis remains a leading cause of death from a single infectious agent. Spectinamides are a promising novel class of anti-tuberculosis agents, and lead spectinamide 1810 has demonstrated excellent efficacy, safety and drug-like properties in numerous in vitro and in vivo assessments in mouse models of tuberculosis. In the current dose ranging and dose fractionation study, we used 29 different combinations of dose level and dosing frequency to characterize the exposure-response relationship for spectinamide 1810 in a mouse model of M. tuberculosis infection and in healthy animals. The obtained data on 1810 plasma concentrations and counts of colony-forming units in lungs were analyzed using a population pharmacokinetic/pharmacodynamic (PK/PD) approach as well as classical anti-infective PK/PD indices. The analysis results indicate that there was no difference in the PK of 1810 in infected compared to healthy, uninfected animals. The PK/PD index analysis showed that bacterial killing of 1810 in mice was best predicted by fC max /MIC and fAUC/MIC rather than f%T MIC . A novel PK/PD model with consideration of postantibiotic effect could adequately describe the exposure-response relationship for 1810 and supports the notion that the in vitro observed postantibiotic effect of this spectinamide also translates to the in vivo situation in mice. The obtained results and pharmacometric model for the exposure-response relationship of 1810 provide a rational basis for dose selection in future efficacy studies of this compound against M. tuberculosis .
The lengthy treatment time for tuberculosis (TB) is a primary cause for the emergence of multidrug resistant tuberculosis (MDR-TB). One approach to improve TB therapy is to develop an inhalational TB therapy that when administered in combination with oral TB drugs eases and shortens treatment. Spectinamides are new semisynthetic analogues of spectinomycin with excellent activity against Mycobacterium tuberculosis (Mtb), including MDR and XDR Mtb strains. Spectinamide-1599 was chosen as a promising candidate for development of inhalational therapy. Using the murine TB model and intrapulmonary aerosol delivery of spectinamide-1599, we characterized the pharmacokinetics and efficacy of this therapy in BALB/c and C3HeB/FeJ mice infected with the Mtb Erdman strain. As expected, spectinamide-1599 exhibited dose-dependent exposure in plasma, lungs, and ELF, but exposure ratios between lung and plasma were 12−40 times higher for intrapulmonary compared to intravenous or subcutaneous administration. In chronically infected BALB/c mice, low doses (10 mg/kg) of spectinamide-1599 when administered thrice weekly for two months provide efficacy similar to that of higher doses (50−100 mg/kg) after one month of therapy. In the C3HeB/FeJ TB model, intrapulmonary aerosol delivery of spectinamide-1599 (50 mg/kg) or oral pyrazinamide (150 mg/kg) had limited or no efficacy in monotherapy, but when both drugs were given in combination, a synergistic effect with superior bacterial reduction of >1.8 log 10 CFU was observed. Throughout the up to eight-week treatment period, intrapulmonary therapy was well-tolerated without any overt toxicity. Overall, these results strongly support the further development of intrapulmonary spectinamide-1599 as a combination partner for anti-TB therapy.
Spectinamides are a novel series of spectinomycin analogs being developed for the treatment of tuberculosis. Intrapulmonary aerosol (IPA) administration of lead spectinamide 1599 has previously been shown to be more efficacious than subcutaneous (SC) administration at comparable doses. The objective of the current study was to characterize the disposition of 1599 in plasma and lungs in mice in order to provide a potential rationale for the observed efficacy differences. 200 mg/kg of 1599 was administered to healthy BALB/c mice by SC injection or by IPA delivery. Plasma and major organs were collected at specified time points until 8 hours after dosing. Drug concentrations were measured by LC-MS/MS and analyzed by noncompartmental pharmacokinetic analysis. 1599 demonstrated rapid absorption into plasma after IPA and SC administration, resulting in very similar plasma exposure for both routes. In contrast, drug exposure in the lungs was 48 times higher following IPA as compared to SC administration, which is highly desirable as the lungs are the main site of infection in pulmonary TB. The higher local exposure in the lungs is likely the basis for the increased efficacy after IPA compared to SC administration. Overall, this study supports the pulmonary route as a potential pathway for the treatment of tuberculosis with 1599.
Small molecules that interact with the colchicine binding site in tubulin have demonstrated therapeutic efficacy in treating cancers. We report the design, syntheses, and antitumor efficacies of new analogues of pyridopyrimidine and hydroquinoxalinone compounds with improved drug-like characteristics. Eight analogues, 5j, 5k, 5l, 5m, 5n, 5r, 5t, and 5u, showed significant improvement in metabolic stability and demonstrated strong antiproliferative potency in a panel of human cancer cell lines, including melanoma, lung cancer, and breast cancer. We report crystal structures of tubulin in complex with five representative compounds, 5j, 5k, 5l, 5m, and 5t, providing direct confirmation for their binding to the colchicine site in tubulin. A quantitative structure–activity relationship analysis of the synthesized analogues showed strong ability to predict potency. In vivo, 5m (4 mg/kg) and 5t (5 mg/kg) significantly inhibited tumor growth as well as melanoma spontaneous metastasis into the lung and liver against a highly paclitaxel-resistant A375/TxR xenograft model.
Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer. Unlike other subtypes of breast cancer, TNBC lacks hormone and growth factor receptor targets. Colchicine-binding site inhibitors (CBSIs) targeting tubulin have been recognized as attractive agents for cancer therapy, but there are no CBSI drugs currently FDA-approved. CH-2-77 has been reported to have potent anti-proliferative activity against a panel of cancer cells in vitro and efficacious anti-tumor effects on melanoma xenografts, yet, its anti-cancer activity specifically against TNBC is unknown. Herein, we demonstrate that CH-2-77 inhibits the proliferation of both paclitaxel-sensitive and paclitaxel-resistant TNBC cells with an average IC50 of 3 nM. CH-2-77 also efficiently disrupts the microtubule assembly, inhibits the migration and invasion of TNBC cells, and induces G2/M cell cycle arrest. The increased number of apoptotic cells and the pattern of expression of apoptosis-related proteins in treated MDA-MB-231 cells suggests that CH-2-77 induces cell apoptosis through the intrinsic apoptotic pathway. In vivo, CH-2-77 shows acceptable overall pharmacokinetics and strongly suppresses the growth of orthotopic MDA-MB-231 xenografts without gross cumulative toxicities when administered 5 times a week. The in vivo efficacy of CH-2-77 (20 mg/kg) is comparable to that of CA4P (28 mg/kg), a CBSI that went through clinical trials. Importantly, CH-2-77 prevents lung metastasis originating from the mammary fat pad in a dose-dependent manner. Our data demonstrate that CH-2-77 is a promising new generation of tubulin inhibitors that inhibit the growth and metastasis of TNBC, and it is worthy of further development as an anticancer agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.