Aquatic bird bornavirus (ABBV-1), an avian bornavirus, has been reported in wild waterfowl from North America and Europe that presented with neurological signs and inflammation of the central and peripheral nervous systems. The potential of ABBV-1to infect and cause lesions in commercial waterfowl species is unknown. The aim of this study was to determine the ability of ABBV-1 to infect and cause disease in day-old Muscovy ducks (n = 174), selected as a representative domestic waterfowl. Ducklings became infected with ABBV-1 through both intracranial and intramuscular, but not oral, infection routes. Upon intramuscular infection, the virus spread centripetally to the central nervous system (brain and spinal cord), while intracranial infection led to virus spread to the spinal cord, kidneys, proventriculus, and gonads (centrifugal spread). Infected birds developed both encephalitis and myelitis by 4 weeks post infection (wpi), which progressively subsided by 8 and 12 wpi. Despite development of microscopic lesions, clinical signs were not observed. Only five birds had choanal and/or cloacal swabs positive for ABBV-1, suggesting a low potential of Muscovy ducks to shed the virus. This is the first study to document the pathogenesis of ABBV-1 in poultry species, and confirms the ability of ABBV-1 to infect commercial waterfowl.
The literature on cell lines that have been developed from rainbow trout (RT) (Oncorhynchus mykiss) is reviewed to illustrate three new terms: invitromatics, invitrome, and invitroomics. Invitromatics is defined as the history, development, characterization, engineering, storage, and sharing of cell lines. RT invitromatics differs from invitromatics for humans and other mammals in several ways. Nearly all the RT cell lines have developed through spontaneous immortalization. No RT cell line undergoes senescence and can be described as being finite, whereas many human cell lines undergo senescence and are finite. RT cell lines are routinely grown at 18-22°C in free gas exchange with air in basal media developed for mammalian cells together with a supplement of fetal bovine serum. An invitrome is defined as the grouping of cell lines around a theme or category. The broad theme in this article is all the cell lines that have ever been created from O. mykiss, or in other words, the RT invitrome. The RT invitrome consists of approximately 55 cell lines. These cell lines can also be categorized on the basis of their storage and availability. A curated invitrome constitutes all the cell lines in a repository and for RT consists of 11 cell lines. These consist of epithelial cell lines, such as RTgill-W1, and fibroblast cell lines, such as RTG-2. RTG-2 can be purchased from a scientific company and constitutes the commercial RT invitrome. Cell lines that are exchanged between researchers are termed the informally shared invitrome and for RT consists of over 35 cell lines. Among these is the monocyte/macrophage cell line, RTS11. Cell lines whose existence is in doubt are termed the zombie invitrome, and for RT, approximately 12 cell lines are zombies. Invitroomics is the application of cell lines to a scientific problem or discipline. This is illustrated with the use of the RT invitrome in virology. Of the RT invitrome, RTG-2 was the most commonly used cell line to isolate viruses. Fifteen families of viruses were studied with RT invitrome. RT cell lines were best able to support replication of viruses from the Herpesviridae, Iridoviridae, Birnaviridae, Togaviridae, and Rhabdoviridae families.
The pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of Coronavirus Disease 2019 (COVID-19). Worldwide efforts are being made to develop vaccines to mitigate this pandemic. We engineered two recombinant Newcastle disease virus (NDV) vectors expressing either the full-length SARS-CoV-2 spike protein (NDV-FLS) or a version with a 19 amino acid deletion at the carboxy terminus (NDV-Δ19S). Hamsters receiving two doses (prime-boost) of NDV-FLS developed a robust SARS-CoV-2-neutralizing antibody response, with elimination of infectious virus in the lungs and minimal lung pathology at five days post-challenge. Single-dose vaccination with NDV-FLS significantly reduced SARS-CoV-2 replication in the lungs, but only mildly decreased lung inflammation. NDV-Δ19S-treated hamsters had a moderate decrease in SARS-CoV-2 titers in lungs and presented with severe microscopic lesions, suggesting that truncation of the spike protein was a less effective strategy. In summary, NDV-vectored vaccines represent a viable option for protection against COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.