Giving customers queue length information about a service system has the potential to influence the decision of a customer to join a queue. Thus, it is imperative for managers of queueing systems to understand how the information that they provide will affect the performance of the system. To this end, we construct and analyze a two-dimensional deterministic fluid model that incorporates customer choice behavior based on delayed queue length information. Reports in the existing literature always assume that all queues have identical parameters and the underlying dynamical system is symmetric. However, in this paper, we relax this symmetry assumption by allowing the arrival rates, service rates, and the choice model parameters to be different for each queue. Our methodology exploits the method of multiple scales and asymptotic analysis to understand how to break the symmetry. We find that the asymmetry can have a large impact on the underlying dynamics of the queueing system.
Many service systems provide customers with information about the system so that customers can make an informed decision about whether to join or not. Many of these systems provide information in the form of an update. Thus, the information about the system is updated periodically in increments of size [Formula: see text]. It is known that these updates can cause oscillations in the resulting dynamics. However, it is an open problem to explicitly characterize the size of these oscillations when they occur. In this paper, we solve this open problem and show how to exactly calculate the amplitude of these oscillations via a fixed point equation. We also calculate closed form approximations via Taylor expansions of the fixed point equation and show that these approximations are very accurate, especially when [Formula: see text] is large. Our analysis provides new insight for systems that use updates as a way of disseminating information to customers.
It is already well-understood that many delay differential equations with only a single constant delay exhibit a change in stability according to the value of the delay in relation to a critical delay value. Finding a formula for the critical delay is important to understanding the dynamics of delayed systems and is often simple to obtain when the system only has a single constant delay. However, if we consider a system with multiple constant delays, there is no known way to obtain such a formula that determines for what values of the delays a change in stability occurs. In this paper, we present some single-delay approximations to a multidelay system obtained via a Taylor expansion as well as formulas for their critical delays which are used to approximate where the change in stability occurs in the multidelay system. We determine when our approximations perform well and we give extra analytical and numerical attention to the two-delay and three-delay settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.