(2015) Probing the ultrafast energy dissipation mechanism of the sunscreen oxybenzone after UVA irradiation. Journal of Physical Chemistry Letters, 6 (8). pp. 1363-1368. Permanent WRAP URL:http://wrap.warwick.ac.uk/83198 Copyright and reuse:The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.Copies of full items can be used for personal research or study, educational, or not-for profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. Publisher's statement:This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry Letters, copyright © American Chemical Society after peer review and technical editing by the publisher.To access the final edited and published work see http://dx.doi.org/10.1021/acs.jpclett.5b00417 A note on versions:The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription. ABSTRACT: Oxybenzone is a common constituent of many commercially available sunscreens providing photoprotection from ultraviolet light incident on the skin. Femtosecond transient electronic and vibrational absorption spectroscopies have been used to investigate the non-radiative relaxation pathways of oxybenzone in cyclohexane and methanol after excitation in the UVA region. The present data suggest that the photoprotective properties of oxybenzone can be understood in terms of an initial ultrafast excited state enol keto tautomerization, followed by efficient internal conversion and subsequent vibrational relaxation to the ground state (enol) tautomer.TOC GRAPHIC
Ultrafast deactivation pathways bestow photostability on nucleobases and hence preserve the structural integrity of DNA following absorption of ultraviolet (UV) radiation. One controversial recovery mechanism proposed to account for this photostability involves electron-driven proton transfer (EDPT) in Watson-Crick base pairs. We report the first direct observation of the EDPT process after
University of Bristol -Explore Bristol Research General rightsThis document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Abstract: Spectroscopically observing the translational and rotational motion of solute molecules in liquid solutions is typically impeded by their interactions with the solvent, which conceal spectral detail through linewidth broadening. Here we show that unique insights into solute dynamics can be made when using perfluorinated solvents, which interact weakly with solutes and provide a simplified liquid environment that helps to bridge the gap in our understanding of gas and liquid phase dynamics. Specifically, we show that in such solvents, translational and rotational cooling of an energetic CN molecule can be observed directly using ultrafast transient absorption spectroscopy. We observe that translational energy dissipation within these liquids can be modeled through a series of classical collisions, whereas classically simulated rotational energy dissipation is shown to be distinctly faster than experimentally measured. We also observe the onset of rotational hindering from nearby solvent molecules, which arises as the average rotational energy of the solute falls below the effective barrier to rotation induced by the solvent.Introduction:
Time resolved vibrational cooling towards equilibrium in perfluorinated and chlorinated solvents provides detailed insights into the transfer of energy between solute and solvent molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.