Flocks of birds may cause major damage to fruit crops in the ripening phase. This problem is addressed by various methods for bird scaring; in many cases, however, the birds become accustomed to the distraction, and the applied scaring procedure loses its purpose. To help eliminate the difficulty, we present a system to detect flocks and to trigger an actuator that will scare the objects only when a flock passes through the monitored space. The actual detection is performed with artificial intelligence utilizing a convolutional neural network. Before teaching the network, we employed videocameras and a differential algorithm to detect all items moving in the vineyard. Such objects revealed in the images were labeled and then used in training, testing, and validating the network. The assessment of the detection algorithm required evaluating the parameters precision, recall, and F1 score. In terms of function, the algorithm is implemented in a module consisting of a microcomputer and a connected videocamera. When a flock is detected, the microcontroller will generate a signal to be wirelessly transmitted to the module, whose task is to trigger the scaring actuator.
Estimating the optimum harvest time and yield embodies an essential food security factor. Vegetation indices have proven to be an effective tool for widescale in-field plant health mapping. A drone-based multispectral camera then conveniently allows acquiring data on the condition of the plant. This article examines and discusses the relationships between vegetation indices and nutritiolnal values that have been determined via chemical analysis of plant samples collected in the field. In this context, emphasis is placed on the normalized difference red edge index (NDRE), normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), and nutritional values, such as those of dry matter. The relationships between the variables were correlated and described by means of regression models. This produced equations that are applicable for estimating the quantity of dry matter and thus determining the optimum corn harvest time. The obtained equations were validated on five different types of corn hybrids in fields within the South Moravian Region, Moravia, the Czech Republic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.