In a prospective cohort study of newborns residing in a malaria holoendemic area of Kenya, Christopher King and colleagues find a subset of children born to malaria-infected women who acquire a tolerant phenotype, which persists into childhood and is associated with increased susceptibility to malarial infection and anemia.
Neonates exposed to parasite antigens (Ags) in utero may develop altered fetal immunity that could affect subsequent responses to infection. We hypothesized that cord blood lymphocytes (CBL) from offspring of mothers residing in an area highly endemic for schistosomiasis, filariasis, and tuberculosis in Kenya would either fail to respond or generate a predominantly Th2-associated cytokine response to helminth and mycobacterial antigens (PPD) in vitro compared to maternal PBMC. Kenyan CBL generated helminth Ag-
BackgroundBesides significantly reducing malaria vector densities, prolonged usage of bed nets has been linked to decline of Anopheles gambiae s.s. relative to Anopheles arabiensis, changes in host feeding preference of malaria vectors, and behavioural shifts to exophagy (outdoor biting) for the two important malaria vectors in Africa, An. gambiae s.l. and Anopheles funestus. In southern coastal Kenya, bed net use was negligible in 1997-1998 when Anopheles funestus and An. gambiae s.s. were the primary malaria vectors, with An. arabiensis and Anopheles merus playing a secondary role. Since 2001, bed net use has increased progressively and reached high levels by 2009-2010 with corresponding decline in malaria transmission.MethodsTo evaluate the impact of the substantial increase in household bed net use within this area on vector density, vector composition, and human-vector contact, indoor and outdoor resting mosquitoes were collected in the same region during 2009-2010 using pyrethrum spray catches and clay pots for indoor and outdoor collections respectively. Information on bed net use per sleeping spaces and factors influencing mosquito density were determined in the same houses using Poisson regression analysis. Species distribution was determined, and number of mosquitoes per house, human-biting rates (HBR), and entomological inoculation rate (EIR) were compared to those reported for the same area during 1997-1998, when bed net coverage had been minimal.ResultsCompared to 1997-1998, a significant decline in the relative proportion of An. gambiae s.s. among collected mosquitoes was noted, coupled with a proportionate increase of An. arabiensis. Following > 5 years of 60-86% coverage with bed nets, the density, human biting rate and EIR of indoor resting mosquitoes were reduced by more than 92% for An. funestus and by 75% for An. gambiae s.l. In addition, the host feeding choice of both vectors shifted more toward non-human vertebrates. Besides bed net use, malaria vector abundance was also influenced by type of house construction and according to whether one sleeps on a bed or a mat (both of these are associated with household wealth). Mosquito density was positively associated with presence of domestic animals.ConclusionsThese entomological indices indicate a much reduced human biting rate and a diminishing role of An. gambiae s.s. in malaria transmission following high bed net coverage. While increasing bed net coverage beyond the current levels may not significantly reduce the transmission potential of An. arabiensis, it is anticipated that increasing or at least sustaining high bed net coverage will result in a diminished role for An. funestus in malaria transmission.
Urinary schistosomiasis remains a major contributor to the disease burden along the southern coast of Kenya. Selective identification of transmission hot spots offers the potential for more effective, highly-focal snail control and human chemotherapy to reduce Schistosoma haematobium transmission. In the present study, a geographic information system was used to integrate demographic, parasitologic, and household location data for an endemic village and neighboring households with the biotic, abiotic, and location data for snail collection/water contact sites. A global spatial statistic was used to detect area-wide trends of clustering for human infection at the household level. Local spatial statistics were then applied to detect specific household clusters of infection, and, as a focal spatial statistic, to evaluate clustering of infection around a putative transmission site. High infection intensities were clustered significantly around a water contact site with high numbers of snails shedding S. haematobium cercariae. When age was considered, clustering was found to be significant at different distances for different age groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.