Matrix metalloproteinases (MMPs) are endopeptidases that play pivotal roles in promoting tumor disease progression, including tumor angiogenesis. In many solid tumors, MMP expression could be attributed to tumor stromal cells and is partially regulated by tumor-stroma interactions via tumor cell-associated extracellular matrix metalloproteinase inducer (EMMPRIN). The role of EMMPRIN during tumor angiogenesis and growth was explored by modulating EMMPRIN expression and activity using recombinant DNA engineering and neutralizing antibodies. In human breast cancer cells, changes in EMMPRIN expression influenced vascular endothelial growth factor (VEGF) production at both RNA and protein levels. In coculture of tumor cells and fibroblasts mimicking tumor-stroma interactions, VEGF expression was induced in an EMMPRIN- and MMP-dependent fashion, and was further enhanced by overexpressing EMMPRIN. Conversely, VEGF expression was inhibited by suppressing EMMPRIN expression in tumor cells, by neutralizing EMMPRIN activity, or by inhibiting MMPs. In vivo, EMMPRIN overexpression stimulated tumor angiogenesis and growth; both were significantly inhibited by antisense suppression of EMMPRIN. Expression of both human and mouse VEGF and MMP, derived from tumor and host cells, respectively, was regulated by EMMPRIN. These results suggest a novel tumor angiogenesis mechanism in which tumor-associated EMMPRIN functionally mediates tumor-stroma interactions and directly contributes to tumor angiogenesis and growth by stimulating VEGF and MMP expression.
We prepared and characterized golimumab (CNTO148), a human IgG1 tumor necrosis factor alpha (TNFα) antagonist monoclonal antibody chosen for clinical development based on its molecular properties. Golimumab was compared with infliximab, adalimumab and etanercept for affinity and in vitro TNFα neutralization. The affinity of golimumab for soluble human TNFα, as determined by surface plasmon resonance, was similar to that of etanercept (18 pM versus 11 pM), greater than that of infliximab (44 pM) and significantly greater than that of adalimumab (127 pM, p=0.018). The concentration of golimumab necessary to neutralize TNFα-induced E-selectin expression on human endothelial cells by 50% was significantly less than those for infliximab (3.2 fold; p=0.017) and adalimumab (3.3-fold; p=0.008) and comparable to that for etanercept. The conformational stability of golimumab was greater than that of infliximab (primary melting temperature [Tm] 74.8 °C vs. 69.5 °C) as assessed by differential scanning calorimetry. In addition, golimumab showed minimal aggregation over the intended shelf life when formulated as a high concentration liquid product (100 mg/mL) for subcutaneous administration. In vivo, golimumab at doses of 1 and 10 mg/kg significantly delayed disease progression in a mouse model of human TNFα-induced arthritis when compared with untreated mice, while infliximab was effective only at 10 mg/kg. Golimumab also significantly reduced histological scores for arthritis severity and cartilage damage, as well as serum levels of pro-inflammatory cytokines and chemokines associated with arthritis. Thus, we have demonstrated that golimumab is a highly stable human monoclonal antibody with high affinity and capacity to neutralize human TNFα in vitro and in vivo.
Human immunodeficiency virus (HIV) infects cells after binding of the viral envelope glycoprotein gpl20 to the cell surface recognition marker CD4. gpl20 is noncovalently associated with the HIV transmembrane envelope glycoprotein gp4l, and this complex is believed responsible for the initial stages of HIV infection and cytopathic events in infected cells. Soluble constructs of CD4 that contain the gpl20 binding site inhibit HIV infection in vitro. This is believed to occur by competitive inhibition ofviral binding to cellular CD4. Here we suggest an alternative mechanism of viral inhibition by soluble CD4 proteins. We demonstrate biochemically and morphologically that following binding, the soluble CD4 proteins sT4, VjV2,DT, and V1[106J (amino acids 1-369, 1-183, and -2 to 106 of mature CD4) induced the release of gpl20 from HIV-1 and HIV-1-infected cells. gpl20 release was concentration-, time-, and temperature-dependent. The reaction was biphasic at 37C and did not take place at 4°C, indicating that binding of soluble CD4 was not sufficient to release gp120. The appearance of free gpl20 in the medium after incubation with sT4 correlated with a decrease in envelope glycoprotein spikes on virions and exposure of a previously cryptic epitope near the amino terminus of gp4l on virions and infected cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.