Results suggested that adult cats with spontaneous femoral capital physeal fractures were most likely to be heavier, neutered males with delayed physeal closure.
Hydrophilic polymers, both surfactants and triblock polymers, are known to seal defects in cell membranes. In previous experiments using laboratory animals, we have exploited this capability using polyethylene glycol (PEG) to repair spinal axons after severe, standardized spinal cord injury (SCI) in guinea pigs. Similar studies were conducted using a related co-polymer Poloxamer 188 (P 188). Here we carried out initial investigations of an intravenous application of PEG or P 188 (3500 Daltons, 30% w/w in saline; 2 mL/kg I.V. and 2 mL/kg body weight or 300 mL P 188 per kg, respectively) to neurologically complete cases of paraplegia in dogs. Our aim was to first determine if this is a clinically safe procedure in cases of severe naturally occurring SCI in dogs. Secondarily, we wanted to obtain preliminary evidence if this therapy could be of clinical benefit when compared to a larger number of similar, but historical, control cases. Strict entry criteria permitted recruitment of only neurologically complete paraplegic dogs into this study. Animals were treated by a combination of conventional and experimental techniques within ϳ72 h of admission for spinal trauma secondary to acute, explosive disk herniation. Outcome measures consisted of measurements of voluntary ambulation, deep and superficial pain perception, conscious proprioception in hindlimbs, and evoked potentials (somatosensory evoked potentials [SSEP]). We determined that polymer injection is a safe adjunct to the conventional management of severe neurological injury in dogs. We did not observe any unacceptable clinical response to polymer injection; there were no deaths, nor any other problem arising from, or associated with, the procedures. Outcome measures over the 6-8-week trial were improved by polymer injection when compared to historical cases. This recovery was unexpectedly rapid compared to these comparator groups. The results of this pilot trial provides evidence consistent with the notion that the injection of inorganic polymers in acute neurotrauma may be a simple and useful intervention during the acute phase of the injury.
Hydrophilic polymers, both surfactants and triblock polymers, are known to seal defects in cell membranes. In previous experiments using laboratory animals, we have exploited this capability using polyethylene glycol (PEG) to repair spinal axons after severe, standardized spinal cord injury (SCI) in guinea pigs. Similar studies were conducted using a related co-polymer Poloxamer 188 (P 188). Here we carried out initial investigations of an intravenous application of PEG or P 188 (3500 Daltons, 30% w/w in saline; 2 mL/kg I.V. and 2 mL/kg body weight or 300 mL P 188 per kg, respectively) to neurologically complete cases of paraplegia in dogs. Our aim was to first determine if this is a clinically safe procedure in cases of severe naturally occurring SCI in dogs. Secondarily, we wanted to obtain preliminary evidence if this therapy could be of clinical benefit when compared to a larger number of similar, but historical, control cases. Strict entry criteria permitted recruitment of only neurologically complete paraplegic dogs into this study. Animals were treated by a combination of conventional and experimental techniques within approximately 72 h of admission for spinal trauma secondary to acute, explosive disk herniation. Outcome measures consisted of measurements of voluntary ambulation, deep and superficial pain perception, conscious proprioception in hindlimbs, and evoked potentials (somatosensory evoked potentials [SSEP]). We determined that polymer injection is a safe adjunct to the conventional management of severe neurological injury in dogs. We did not observe any unacceptable clinical response to polymer injection; there were no deaths, nor any other problem arising from, or associated with, the procedures. Outcome measures over the 6-8-week trial were improved by polymer injection when compared to historical cases. This recovery was unexpectedly rapid compared to these comparator groups. The results of this pilot trial provides evidence consistent with the notion that the injection of inorganic polymers in acute neurotrauma may be a simple and useful intervention during the acute phase of the injury.
A five-week-old kitten presented with clinical signs consistent with a patent urachus. The urachal anomaly was revealed by exploratory celiotomy and surgically excised without complications. Follow-up radiographic evaluation confirmed the complete removal of the urachal anomaly. Twenty-five months after surgery the cat remained healthy and without problems.
SummaryExtracorporeal shock wave therapy (ESWT) may be an effective treatment modality for delayed or chronic non-union fractures. ESWT is a non-invasive technique that avoids the potential morbidity and mortality associated with traditional surgical procedures, and its use does not preclude subsequent surgical treatment. This case series demonstrates the feasibility, versatility and safety of treating dogs with ESWT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.