Molar sound velocity, molar adiabatic compressibility and Van der Waals constant of gaseons, liquid and supercritical carbon dioxide at different temperature and pressure are calculated using liquid acoustical models and data of sound velocity, density, molar volume and adiabatic compressibility of carbon dioxide provided by National Institute of Standards and Technology, USA. The results show that the liquid acoustical models can be used in study acoustical property of supercritical carbon dioxide in wide ranges of temperature and pressure. The surface tension, conglutination and diffusivity at different temperatures and pressures are calculated. And the mutative rules of these physical quantities are analyzed. The data can provide reference for supercritical liquid technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.