A new balanced autosomal translocation, t(7;12) (p12;p13), was found in a high genetic risk family in which the mother is a translocation carrier. She had 12 pregnancies, six of which were terminated during the first trimester by spontaneous abortions. Among the six live births, three children inherited the translocation from their mother and were phenotypically normal. The father and three other children had normal karyotypes.
Somatic cell hybrids between human lymphoblastoid cells (Raji) and temperature-sensitive Chinese hamster cells (K12) were selected from monolayer cultures in MEM at 40 degrees C. A total of 21 hybrid clones were isolated and karyotyped. All clones contained a near complete set of Chinese hamster chromosomes and 1 to 5 human chromosomes. Human chromosome 14 present in the hybrid cells of all clones; and was the only human chromosome retained in 10 clones. The presence of human chromosome 14 in hybrids was further confirmed by the demonstration of human nucleoside phosphorylase activity in the hybrid cells. Only one hybrid clone was positive for EBNA, the Epstein-Barr virus antigen present in Raji cells. These findings indicate that human chromosome 14 contains the necessary information for the K12 cells to overcome their G1 defect in the cell cycle and grow at non-permissive temperature. The present study lends strong support to the possibility that different steps in the G1 phase of the cell cycle are controlled by genes located on different chromosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.