In recent years, deep learning methods have been widely used in the hyperspectral image (HSI) classification tasks. Among them, spectral-spatial combined methods based on the three-dimensional (3-D) convolution have shown good performance. However, because of the three-dimensional convolution, increasing network depth will result in a dramatic rise in the number of parameters. In addition, the previous methods do not make full use of spectral information. They mostly use the data after dimensionality reduction directly as the input of networks, which result in poor classification ability in some categories with small numbers of samples. To address the above two issues, in this paper, we designed an end-to-end 3D-ResNeXt network which adopts feature fusion and label smoothing strategy further. On the one hand, the residual connections and split-transform-merge strategy can alleviate the declining-accuracy phenomenon and decrease the number of parameters. We can adjust the hyperparameter cardinality instead of the network depth to extract more discriminative features of HSIs and improve the classification accuracy. On the other hand, in order to improve the classification accuracies of classes with small numbers of samples, we enrich the input of the 3D-ResNeXt spectral-spatial feature learning network by additional spectral feature learning, and finally use a loss function modified by label smoothing strategy to solve the imbalance of classes. The experimental results on three popular HSI datasets demonstrate the superiority of our proposed network and an effective improvement in the accuracies especially for the classes with small numbers of training samples.
Recently, deep learning methods based on three-dimensional (3-D) convolution have been widely used in the hyperspectral image (HSI) classification tasks and shown good classification performance. However, affected by the irregular distribution of various classes in HSI datasets, most previous 3-D convolutional neural network (CNN)-based models require more training samples to obtain better classification accuracies. In addition, as the network deepens, which leads to the spatial resolution of feature maps gradually decreasing, much useful information may be lost during the training process. Therefore, how to ensure efficient network training is key to the HSI classification tasks. To address the issue mentioned above, in this paper, we proposed a 3-DCNN-based residual group channel and space attention network (RGCSA) for HSI classification. Firstly, the proposed bottom-up top-down attention structure with the residual connection can improve network training efficiency by optimizing channel-wise and spatial-wise features throughout the whole training process. Secondly, the proposed residual group channel-wise attention module can reduce the possibility of losing useful information, and the novel spatial-wise attention module can extract context information to strengthen the spatial features. Furthermore, our proposed RGCSA network only needs few training samples to achieve higher classification accuracies than previous 3-D-CNN-based networks. The experimental results on three commonly used HSI datasets demonstrate the superiority of our proposed network based on the attention mechanism and the effectiveness of the proposed channel-wise and spatial-wise attention modules for HSI classification. The code and configurations are released at Github.com.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.