[1] Lattice Boltzmann flow simulations provide a physics-based means of estimating intrinsic permeability from pore structure and accounting for inertial flow that leads to departures from Darcy's law. Simulations were used to compute intrinsic permeability where standard measurement methods may fail and to provide better understanding of departures from Darcy's law under field conditions. Simulations also investigated resolution issues. Computed tomography (CT) images were acquired at 0.8 mm interscan spacing for seven samples characterized by centimeter-scale biogenic vuggy macroporosity from the extremely transmissive sole-source carbonate karst Biscayne aquifer in southeastern Florida. Samples were as large as 0.3 m in length; 7-9 cm-scale-length subsamples were used for lattice Boltzmann computations. Macroporosity of the subsamples was as high as 81%. Matrix porosity was ignored in the simulations. Non-Darcy behavior led to a twofold reduction in apparent hydraulic conductivity as an applied hydraulic gradient increased to levels observed at regional scale within the Biscayne aquifer; larger reductions are expected under higher gradients near wells and canals. Thus, inertial flows and departures from Darcy's law may occur under field conditions. Changes in apparent hydraulic conductivity with changes in head gradient computed with the lattice Boltzmann model closely fit the Darcy-Forchheimer equation allowing estimation of the Forchheimer parameter. CT-scan resolution appeared adequate to capture intrinsic permeability ; however, departures from Darcy behavior were less detectable as resolution coarsened.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.