SUMMARY:Artemisinin is widely used as an agent to treat malaria; the possible antiangiogenic effects of this compound are unknown. In the present study, the antiangiogenic effects of artemisinin were investigated in mouse embryonic stem cell-derived embryoid bodies, which are a model system for early postimplantation embryos and which efficiently differentiate capillaries. Artemisinin dose dependently inhibited angiogenesis in embryoid bodies and raised the level of intracellular reactive oxygen species. Furthermore impaired organization of the extracellular matrix component laminin and altered expression patterns of matrix metalloproteinases 1, 2, and 9 were observed during the time course of embryoid body differentiation. Consequently accelerated penetration kinetics of the fluorescent anthracycline doxorubicin occurred within the tissue, indicating increased tissue permeability. Artemisinin down-regulated hypoxia-inducible factor-1␣ and vascular endothelial growth factor (VEGF) expression, which control endothelial cell growth. The antiangiogenic effects and the inhibition of hypoxia-inducible factor-1␣ and VEGF were reversed upon cotreatment with the free radical scavengers mannitol and vitamin E, indicating that artemisinin may act via reactive oxygen species generation. Furthermore, capillary formation was restored upon coadministration of exogenous VEGF. The data of the present study suggest that the antiangiogenic activity of artemisinin and the increase in tissue permeability for cytostatics may be exploited for anticancer treatment. (Lab Invest 2003, 83:1647-1655.
SUMMARY:Tumor-induced angiogenesis is a prerequisite for excessive tumor growth. Blood vessels invade the tumor tissue after degradation of the extracellular matrix scaffold by matrix metalloproteinases (MMPs). Inhibition of MMPs has been therefore suggested to be a useful tool to abolish neoangiogenesis of solid tumors. In the present study, antioxidative plant ingredients used in traditional Chinese medicine were investigated for their capacity to down-regulate MMP expression and to inhibit angiogenesis in embryonic stem cell-derived embryoid bodies and tumor-induced angiogenesis in confrontation cultures consisting of embryoid bodies and multicellular DU-145 prostate tumor spheroids. Embryoid bodies transiently expressed MMP-1, MMP-2, and MMP-9 during the time of differentiation of capillary-like structures. In confrontation cultures, MMP expression was increased compared with control tumor spheroids and embryoid bodies cultivated separately. The increased expression of MMPs in confrontation cultures was a result of elevated levels of reactive oxygen species (ROS) upon confrontation culture and was totally abolished in the presence of the free radical scavenger vitamin E. Incubation of embryoid bodies with baicalein, epicatechin, berberine, and acteoside, which are herbal ingredients used in traditional Chinese medicine, significantly inhibited angiogenesis in embryoid bodies and decreased intracellular ROS levels. Tumor-induced angiogenesis in confrontation cultures was totally abolished in the presence of the free radical scavenger vitamin E. Because herbal ingredients down-regulated MMP expression, we conclude that ROS generated during confrontation culture induce the expression of MMPs that are necessary for endothelial cell invasion into the tumor tissue. (Lab Invest 2003, 83:87-98).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.