The pipeline industry is improving its ability to detect and locate leaks through emerging technologies. There has been a variety of research in recent years aimed at further development of sensor-based technologies for leak detection. A key obstacle to retrofitting existing pipelines with leak detection technologies is the cost and risk of installing hardware, particularly those sensors that require excavation near the pipe. There are many advantages to employing leak detection systems that can leverage existing instrumentation access locations. One such technology may be negative-wave leak detection systems. Negative-wave technologies work by measuring dynamic pressure changes in the pipe. It should be noted that some negative-wave systems require line modifications to accommodate multiple transmitters. While such systems have been on the market for many years, there is insufficient data available about their performance under various pipeline operating conditions for widespread adoption. In an effort to close many information gaps on the performance envelope of negative-wave technologies, a PRCI-funded field test was performed on a 41-kilometer segment of a 30-inch diameter heavy crude oil pipeline. Products from three suppliers were installed at either end of the test segment. Actual commodity withdrawals were conducted at a remote valve site approximately 21 kilometers into the segment during various operations to test the systems’ abilities to detect the withdrawals without direct user interaction. These test points included withdrawals during steady-state flowing, pump startup, and shutdown conditions. Data were collected from each system to determine their abilities to detect leaks under various conditions, abilities to locate the leak, false alarm rates, and response times. This test provided significant insight into the performance of such systems over the range of conditions tested. The key focus of this paper is the approach for conducting such multi-vendor commodity withdrawals. This project required some unique considerations for its execution. Such considerations are also documented to provide input to others who are considering such a test.
Pipelines in remote and ecologically sensitive regions pose special challenges for pipeline integrity monitoring. These challenges include difficulties of access, reliability issues of communication and instrumentation that may impact the leak detection technology applied in these regions. The selection, application and continuous testing of an appropriate technology to detect possible leaks are important to pipeline integrity monitoring. The paper reports theoretical assessment and extensive testing on an Enbridge subarctic liquid pipeline. It also reports the comprehensive cost-benefit analysis to guide the leak detection instrument design/configuration and the evaluation of the capabilities of alternative computational pipeline monitoring (CPM) technologies for leak detection. The selected test pipeline is an 869 kilometer (540 mile), NPS 12 inch pipeline that transports sweet crude through environmentally sensitive areas. This pipeline currently uses a real-time transient model (RTTM) style CPM as the leak detection system (LDS). The pipeline LDS is tested annually by a number of industry-recognized methodologies. These include fluid withdrawal tests, simulated leak tests and an API-1130 instrument adjustment approach. This pipeline is also assessed by API-1149 for its theoretical CPM leak detection sensitivity. A pilot project invited commercial CPM-style vendors to participate in an LDS test using data from fluid withdrawal and simulated leak tests. Five vendors responded and were included in the test suite. The paper describes the design and implementation of the test process. The results of the commercial systems are presented in aggregated form and the participating vendors remain anonymous. Performance assessment focuses on the LDS evaluation factors of sensitivity and accuracy. The paper concludes with a “lessons learned” review of issues associated with test design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.