In 1998, Brassard, Høyer, Mosca, and Tapp (BHMT) gave a quantum algorithm for approximate counting. Given a list of N items, K of them marked, their algorithm estimates K to within relative error ε by making only O 1 ε N K queries. Although this speedup is of "Grover" type, the BHMT algorithm has the curious feature of relying on the Quantum Fourier Transform (QFT), more commonly associated with Shor's algorithm. Is this necessary? This paper presents a simplified algorithm, which we prove achieves the same query complexity using Grover iterations only. We also generalize this to a QFT-free algorithm for amplitude estimation. Related approaches to approximate counting were sketched previously by Grover, Abrams and Williams, Suzuki et al., and Wie (the latter two as we were writing this paper), but in all cases without rigorous analysis.
We consider performing phase estimation under the following conditions: we are given only one copy of the input state, the input state does not have to be an eigenstate of the unitary, and the state must not be measured. Most quantum estimation algorithms make assumptions that make them unsuitable for this 'coherent' setting, leaving only the textbook approach. We present novel algorithms for phase, energy, and amplitude estimation that are both conceptually and computationally simpler than the textbook method, featuring both a smaller query complexity and ancilla footprint. They do not require a quantum Fourier transform, and they do not require a quantum sorting network to compute the median of several estimates. Instead, they use block-encoding techniques to compute the estimate one bit at a time, performing all amplification via singular value transformation. These improved subroutines accelerate the performance of quantum Metropolis sampling and quantum Bayesian inference.
Cellular automata are interacting classical bits that display diverse emergent behaviors, from fractals to random-number generators to Turing-complete computation. We discover that quantum cellular automata (QCA) can exhibit complexity in the sense of the complexity science that describes biology, sociology, and economics. QCA exhibit complexity when evolving under 'Goldilocks rules' that we define by balancing activity and stasis. Our Goldilocks rules generate robust dynamical features (entangled breathers), network structure and dynamics consistent with complexity, and persistent entropy fluctuations. Present-day experimental platforms-Rydberg arrays, trapped ions, and superconducting qubits-can implement our Goldilocks protocols, making testable the link between complexity science and quantum computation exposed by our QCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.