Efflux of 36Cl- from frog sartorius muscles equilibrated in depolarizing solutions was measured. Cl- efflux consists of a component present at low pH and a pH-dependent component which increases as external pH increases. In depolarized muscles from Rana pipiens, the pH-dependent Cl- efflux has an apparent pKa near 6.4. The reduction of Cl- efflux by external Zn2+ was determined at different external pHs and chloride activities. The effect of external chloride activity on the pH-dependent Cl- efflux was also examined. At pH 6.5 and a membrane potential of -22 mV, increasing external Cl- activity from 0.108 to 0.28 M decreased inhibition of the pH-dependent Cl- efflux at all activities of Zn2+. The Zn2+ activity needed to reduce Cl- efflux by half increased from 0.39 x 10(-3) to 2.09 x 10(-3) M. By contrast, external Cl- activity had no measurable effect on the apparent pKa of the pH-dependent efflux. At constant Cl- activity less than 0.21 M, increasing external pH from 6.5 to 7.5 decreased inhibition by low Zn2+ activities with either a slight increase or no change in the Zn2+ activity producing half-inhibition. In other words, for relatively low Cl- activities, protection against inhibition of Cl- efflux by low Zn2+ activities was obtained by raising, not lowering, external pH; this is not what is expected if H+ and Zn2+ ions compete at the same site to produce inhibition of Cl- efflux. We conclude that Zn2+ and low pH inhibit Cl- efflux by separate and distinct mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)
Efflux of 36Cl- from frog sartorius muscles equilibrated in two depolarizing solutions was measured. Cl- efflux consists of a component present at low pH and a pH-dependent component which increases as external pH increases. For temperatures between 0 and 20 degrees C, the measured activation energy is 7.5 kcal/mol for Cl- efflux at pH 5 and 12.6 kcal/mol for the pH-dependent Cl- efflux. The pH-dependent Cl-efflux can be described by the relation mu = 1/(1 + 10n(pK alpha-pH], where mu is the Cl- efflux increment obtained on stepping from pH 5 to the test pH, normalized with respect to the increment obtained on stepping from pH 5 to 8.5 or 9.0. For muscles equilibrated in solutions containing 150 mM KCl plus 120 mM NaCl (internal potential about -15 mV), the apparent pK alpha is 6.5 at both 0 and 20 degrees C, and n = 2.5 for 0 degrees C and 1.5 for 20 degrees C. For muscles equilibrated in solutions containing 7.5 mM KCl plus 120 mM NaCl (internal potential about -65 mV), the apparent pK alpha at 0 degrees C is 6.9 and n is 1.5. The voltage dependence of the apparent pK alpha suggests that the critical pH-sensitive moiety producing the pH-dependent Cl- efflux is sensitive to the membrane electric field, while the insensitivity to temperature suggests that the apparent heat of ionization of this moiety is zero. The fact that n is greater than 1 suggests that cooperativity between pH-sensitive moieties is involved in determining the Cl- efflux increment on raising external pH. The histidine-modifying reagent diethylpyrocarbonate (DEPC) applied at pH 6 reduces the pH-dependent Cl- efflux according to the relation, efflux = exp(-k.[DEPC].t), where t is the exposure time (min) to DEPC at a prepared initial concentration of [DEPC] (mM). At 17 degrees C, k-1 = 188 mM . min. For temperatures between 10 and 23 degrees C, k has an apparent Q10 of 2.5. The Cl- efflux inhibitor SCN- at a concentration of 20 mM substantially retards the reduction of the pH-dependent Cl- efflux by DEPC. The findings that the apparent pK alpha is 6.5 in depolarized muscles, that DEPC eliminates the pH-dependent Cl- efflux, and that this action is retarded by SCN- supports the notion that protonation of histidine groups associated with Cl- channels is the controlling reaction for the pH-dependent Cl- efflux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.