Abstract:The west watershed of Mirror Lake in the White Mountains of New Hampshire contains several terraces that are at different altitudes and have different geologic compositions. The lowest terrace (FSE) has 5 m of sand overlying 9 m of till. The two next successively higher terraces (FS2 and FS1) consist entirely of sand and have maximum thicknesses of about 7 m. A fourth, and highest, terrace (FS3) lies in the north-west watershed directly adjacent to the west watershed. This highest terrace has 2 m of sand overlying 8 m of till. All terraces overlie fractured crystalline bedrock. Numerical models of hypothetical settings simulating ground-water flow in a mountainside indicated that the presence of a terrace can cause local ground-water flow cells to develop, and that the flow patterns differ based on the geologic composition of the terrace. For example, more ground water moves from the bedrock to the glacial deposits beneath terraces consisting completely of sand than beneath terraces that have sand underlain by till. Field data from Mirror Lake watersheds corroborate the numerical experiments. The geology of the terraces also affects how the stream draining the west watershed interacts with ground water. The stream turns part way down the mountainside and passes between the two sand terraces, essentially transecting the movement of ground water down the valley side. Transects of water-table wells were installed across the stream's riparian zone above, between, and below the sand terraces. Head data from these wells indicated that the stream gains ground water on both sides above and below the sand terraces. However, where it flows between the sand terraces the stream gains ground water on its uphill side and loses water on its downhill side. Biogeochemical processes in the riparian zone of the flow-through reach have resulted in anoxic ground water beneath the lower sand terrace. Results of this study indicate that it is useful to understand patterns of ground-water flow in order to fully understand the flow and chemical characteristics of both ground water and surface water in mountainous terrain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.