The presence and accumulation of plastic and microplastic (MP) debris in the natural environment is of increasing concern and has become the focus of attention for many researchers. Plastic debris is a prolific, long-lived pollutant, that is highly resistant to environmental degradation, readily adheres hydrophobic persistent organic pollutants and is linked to morbidity and mortality in numerous aquatic organisms. The prevalence of MPs within the natural environment are a symptom of continuous and rapid growth in synthetic plastic production and mismanagement of plastic waste. Many terrestrial and marine-based processes, including domestic and industrial drainage, maritime activities agricultural runoff and wastewater treatment plants (WWTPs) effluent, contribute to MP pollution in aquatic environments. MPs have been identified in food consumed by human and in air samples, and exposure to MPs via ingestion or inhalation could lead to adverse human health effects. Regulations in many countries have already been established or will soon be implemented to reduce MPs in aquatic environments. This review focuses on the occurrence, sources, and transport of MPs in terrestrial and aquatic environments to highlight potential human health effects, and applicable regulations to mitigate impacts of MPs. This study also highlights the importance of personality traits and cognitive ability in reducing the entry of MPs into the environment.
Our model appears to be an accurate, specific and sensitive model for identifying the presence of CHD, but will require validation in prospective studies.
Plastic debris is widespread and ubiquitous in the marine environment and ingestion of plastic debris by marine organisms is well-documented. Viscera and gills of 110 individual marine fish from 11 commercial fish species collected from the marine fish market were examined for presence of plastic debris. Isolated particles were characterized by Raman spectroscopy, and elemental analysis was assessed using energy-dispersive X-ray spectroscopy (EDX). Nine (of 11) species contained plastic debris. Out of 56 isolated particles, 76.8% were plastic polymers, 5.4% were pigments, and 17.8% were unidentified. Extracted plastic particle sizes ranged from 200 to 34,900 μm (mean = 2600 μm ±7.0 SD). Hazardous material was undetected using inorganic elemental analysis of extracted plastic debris and pigment particles. The highest number of ingested microplastics was measured in Eleutheronema tridactylum and Clarias gariepinus, suggesting their potential as indicator species to monitor and study trends of ingested marine litter.
Microplastics (MPs) are environmental contaminants that are of increasing global concern. This study investigated presence of MPs in four varieties of marine derived commercial fish meal, followed by identification of their polymer composition using Fourier-Transform Infrared (FTIR) spectroscopy. Exposure experiments were conducted on cultured common carp (Cyprinus carpio) by feeding four varieties of commercially available fish meal to determine relationships between abundance and properties of MPs found both in meal and those transferred to cultured common carp. Mean particle sizes were 452±161 μm (±SD). Fragments were the predominant shape of MP found in fish meal (67%) and C. carpio gastrointestinal tract and gills (65%), and polypropylene and polystyrene were the most present plastic polymers found in fish meal (45% and 24%, respectively) and C. carpio (37% and 33%, respectively). Positive relationships were found between MP levels in fish meal and C. carpio. This study highlights that marine derived fish meal may be a source of MPs which can be transferred to cultured fish, thus posing a concern for aquaculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.