Background: Seaweed polysaccharides have been recommended as anticancer supplements and for boosting human health; however, their benefits in the treatment of triple-negative breast cancers (TNBCs) and improving immune surveillance remain unclear. Olaparib is a first-in-class poly (ADP-ribose) polymerase inhibitor. Oligo-Fucoidan, a low-molecular-weight sulfated polysaccharide purified from brown seaweed (Laminaria japonica), exhibits significant bioactivities that may aid in disease management.Methods: Macrophage polarity, clonogenic assays, cancer stemness properties, cancer cell trajectory, glucose metabolism, the TNBC 4T1 cells and a 4T1 syngeneic mouse model were used to inspect the therapeutic effects of olaparib and Oligo-Fucoidan supplementation on TNBC aggressiveness and microenvironment.Results: Olaparib treatment increased sub-G1 cell death and G2/M arrest in TNBC cells, and these effects were enhanced when Oligo-Fucoidan was added to treat the TNBC cells. The levels of Rad51 and programmed deathligand 1 (PD-L1) and the activation of epidermal growth factor receptor (EGFR) and adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) facilitate drug resistance and TNBC metastasis. However, the combination of olaparib and Oligo-Fucoidan synergistically reduced Rad51 and PD-L1 levels, as well as the activity of EGFR and AMPK; consistently, TNBC cytotoxicity and stemness were inhibited. Oligo-Fucoidan plus olaparib better inhibited the formation of TNBC stem cell mammospheroids with decreased subpopulations of CD44 high /CD24 low and EpCAM high cells than monotherapy. Importantly, Oligo-Fucoidan plus olaparib repressed the oncogenic interleukin-6 (IL-6)/p-EGFR/ PD-L1 pathway, glucose uptake and lactate production. Oligo-Fucoidan induced immunoactive and antitumoral M1 macrophages and attenuated the side effects of olaparib, such as the promotion on immunosuppressive and protumoral M2 macrophages. Furthermore, olaparib plus Oligo-Fucoidan dramatically suppressed M2 macrophage invasiveness and repolarized M2 to the M0-like (F4/80 high ) and M1-like (CD80 high and CD86 high ) phenotypes. In addition, olaparib-and Oligo-Fucoidan-pretreated TNBC cells resulted in the polarization of M0 macrophages into CD80(+) M1
In our previous study, we first demonstrated a significant effect of dextromethorphan (DM) on morphine-seeking behavior in morphine-dependent rats, when DM was given during morphine withdrawal. Using the same conditioned place preference (CPP) paradigm modified for measuring drug-seeking-related behavior, we further investigated the possible effect of DM on methamphetamine (MA)-seeking in MA-dependent rats. Our data showed that DM could also effectively suppress the drug-seeking behavior for MA, when administered during MA withdrawal. This suggests that DM may possess a pharmacological property to prevent drug-seeking behavior for addictive drugs in general. To examine the action sites of DM in the brain, DM was microinjected into the VTA or the NAc, and tested for its effect on MA-seeking during withdrawal. Both intra-VTA and intra-NAc injections of DM were able to block the MA-seeking, suggesting that DM has a dual action sites. In our neurochemical results, intra-NAc injection of DM showed a clear reduction of DA turnover rate at the NAc and the mPFC in response to MA challenge during withdrawal, which matched with the behavioral results. However, intra-VTA injection of DM reduced the DA turnover rate at the mPFC but did not have effect on the DA turnover rate at the NAc. Although further investigations may be needed to verify the connection between our neurochemical and behavioral results, the present study highlights the therapeutic potential of DM in antidrug-seeking behavior of MA and that the mechanism could be related to its effect on the mesolimbic and mesocortical dopaminergic pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.