Continental carbonates of Quaternary age in southern Italy commonly exhibit the facies of calcareous tufa, often reported as related to shallow aquifers fed by meteoric waters and to organic processes. A close spatial relationship exists between the mappable tufa deposits and major Quaternary extensional faults. With respect to the Ca‐Mg‐HCO3 composition of limestone aquifers’ springs, tufa‐depositing springs exhibit higher salinity and alkalinity, are slightly warmer, have lower pH and are enriched in SO4 and CO2. Their δ13C values are systematically positive and compatible with a deep‐seated carbon source. A clear input of soil‐derived organic carbon is indicated only for small, non‐mappable tufas deposited by perched springs. The dataset indicates that the large tufa deposits owe their origin to a supplementary source of CO2 advected by degassing through active faults, as a necessary prerequisite for inducing a rise of total dissolved salts and alkalinity. Meteoric waters that have come from a shallow aquifer are able to precipitate only limited amount of carbonates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.