Abstract. We examined the vegetation of the Southeast Saline Everglades (SESE), where water management and sea level rise have been important ecological forces during the last 50 years. Marshes within the SESE were arranged in well‐defined compositional zones parallel to the coast, with mangrove‐dominated shrub communities near the coast giving way to graminoid‐mangrove mixtures, and then Cladium marsh. The compositional gradient was accompanied by an interiorward decrease in total aboveground biomass, and increases in leaf area index and periphyton biomass. Since the mid‐1940s, the boundary of the mixed graminoid‐mangrove and Cladium communities shifted inland by 3.3 km. The interior boundary of a low‐productivity zone appearing white on both black‐and‐white and CIR photos moved inland by 1.5 km on average. A smaller shift in this ‘white zone’ was observed in an area receiving fresh water overflow through gaps in one of the SESE canals, while greater change occurred in areas cut off from upstream water sources by roads or levees. These large‐scale vegetation dynamics are apparently the combined result of sea level rise ‐ ca. 10 cm since 1940 ‐ and water management practices in the SESE.
Extensive portions of the southern Everglades are characterized by series of elongated, raised peat ridges and tree islands oriented parallel to the predominant flow direction, separated by intervening sloughs. Tall herbs or woody species are associated with higher elevations and shorter emergent or floating species are associated with lower elevations. The organic soils in this ''Ridge-and-Slough'' landscape have been stable over millennia in many locations, but degrade over decades under altered hydrologic conditions. We examined soil, pore water, and leaf phosphorus (P) and nitrogen (N) distributions in six Ridge and Slough communities in Shark Slough, Everglades National Park. We found P enrichment to increase and N to decrease monotonically along a gradient from the most persistently flooded sloughs to rarely flooded ridge environments, with the most dramatic change associated with the transition from marsh to forest. Leaf N:P ratios indicated that the marsh communities were strongly P-limited, while data from several forest types suggested either N-limitation or co-limitation by N and P. Ground water stage in forests exhibited a daytime decrease and partial nighttime recovery during periods of surface exposure. The recovery phase suggested re-supply from adjacent flooded marshes or the underlying aquifer, and a strong hydrologic connection between ridge and slough. We therefore developed a simple steady-state model to explore a mechanism by which a phosphorus conveyor belt driven by both evapotranspiration and the regional flow gradient can contribute to the characteristic Ridge and Slough pattern. The model demonstrated that evapotranspiration sinks at higher elevations can draw in low concentration marsh waters, raising local soil and water P concentrations. Focusing of flow and nutrients at the evapotranspiration zone is not strong enough to overcome the regional gradient entirely, allowing the nutrient to spread downstream and creating an elongated concentration plume in the direction of flow. Our analyses suggest that autogenic processes involving the effects of initially small differences in topography, via their interactions with hydrology and nutrient availability, can produce persistent physiographic patterns in the organic sediments of the Everglades.
Freeze events significantly influence landscape structure and community composition along subtropical coastlines. This is particularly true in south Florida, where such disturbances have historically contributed to patch diversity within the mangrove forest, and have played a part in limiting its inland transgression. With projected increases in mean global temperatures, such instances are likely to become much less frequent in the region, contributing to a reduction in heterogeneity within the mangrove forest itself. To understand the process more clearly, we explored the dynamics of a Dwarf mangrove forest following two chilling events that produced freeze-like symptoms, i.e., leaf browning, desiccation, and mortality, and interpreted the resulting changes within the context of current winter temperatures and projected future scenarios. Structural effects from a 1996 chilling event were dramatic, with mortality and tissue damage concentrated among individuals comprising the Dwarf forest's low canopy. This disturbance promoted understory plant development and provided an opportunity for Laguncularia racemosa to share dominance with Rhizophora mangle. Mortality due to the less severe 2001 event was greatest in the understory, probably because recovery of the protective canopy following the earlier freeze was still incomplete. Stand dynamics were static over the same period in nearby unimpacted sites. The probability of reaching temperatures as low as those recorded at a nearby meteorological station ( 3 1C) under several warming scenarios was simulated by applying 11 incremental temperature increases to a model developed from a 42-year temperature record. According to the model, the frequency of similar chilling events decreased from once every 1.9 years at present to once every 3.4 and 32.5 years with 1 and 4 1C warming, respectively. The large decrease in the frequency of these events would eliminate an important mechanism that maintains Dwarf forest structure, and promotes compositional diversity.
A tree species replacement sequence for dry broadleaved forests (tropical hardwood hammocks) in the upper Florida Keys was inferred from species abundances in stands abandoned from agriculture or other anthropogenic acitivities at different times in the past. Stands were sampled soon after Hurricane Andrew, with live and hurricane‐killed trees recorded separately; thus it was also possible to assess the immediate effect of Hurricane Andrew on stand successional status. We used weighted averaging regression to calculate successional age optima and tolerances for all species, based on the species composition of the pre‐hurricane stands. Then we used weighted averaging calibration to calculate and compare inferred successional ages for stands based on (1) the species composition of the pre‐hurricane stands and (2) the hurricane‐killed species assemblages. Species characteristic of the earliest stages of post‐agricultural stand development remains a significant component of the forest for many years, but are gradually replaced by taxa not present, even as seedlings, during the first few decades. This compositional sequence of a century or more is characterized by the replacement of deciduous by evergreen species, which is hypothesized to be driven by increasing moisture storage capacity in the young organic soils. Mortality from Hurricane Andrew was concentrated among early‐successional species, thus tending to amplify the long‐term trend in species composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.