The morphology of blood vessels in retinal fundus images is an important indicator of diseases like glaucoma, hypertension and diabetic retinopathy. The accuracy of retinal blood vessels segmentation affects the quality of retinal image analysis which is used in diagnosis methods in modern ophthalmology. Contrast enhancement is one of the crucial steps in any of retinal blood vessel segmentation approaches. The reliability of the segmentation depends on the consistency of the contrast over the image. This paper presents an assessment of the suitability of a recently invented spatially adaptive contrast enhancement technique for enhancing retinal fundus images for blood vessel segmentation. The enhancement technique was integrated with a variant of Tyler Coye algorithm, which has been improved with Hough line transformation based vessel reconstruction method. The proposed approach was evaluated on two public datasets STARE and DRIVE. The assessment was done by comparing the segmentation performance with five widely used contrast enhancement techniques based on wavelet transform, contrast limited histogram equalization, local normalization, linear un-sharp masking and contourlet transform. The results revealed that the assessed enhancement technique is well suited for the application and also outperforms all compared techniques.
This paper presents a super-efficient spatially adaptive contrast enhancement algorithm for enhancing infrared (IR) radiation based superficial vein images in real-time. The super-efficiency permits the algorithm to run in consumer-grade handheld devices, which ultimately reduces the cost of vein imaging equipment. The proposed method utilizes the response from the low-frequency range of the IR image signal to adjust the boundaries of the reference dynamic range in a linear contrast stretching process with a tunable contrast enhancement parameter, as opposed to traditional approaches which use costly adaptive histogram equalization based methods. The algorithm has been implemented and deployed in a consumer grade Android-based mobile device to evaluate the performance. The results revealed that the proposed algorithm can process IR images of veins in real-time on low-performance computers. It was compared with several well-performed traditional methods and the results revealed that the new algorithm stands out with several beneficial features, namely, the fastest processing, the ability to enhance the desired details, the excellent illumination normalization capability and the ability to enhance details where the traditional methods failed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.