In contrast to conclusions of previous studies /I-3/ claiming the absence of histone HI from the SV40 and polyoma viral minichromosomes we have found that a preparation of purified SV40 minichromosomes does contain histone HI. The content of HI in relation to other four histones in the SV40 minichromosomes is close to that in the cellular chromatin. Histone HI in the isolated SV40 minichromosomes is bound apparently to internucleosomal DNA stretches as was shown already for HI in the cellular chromatin /4/. In addition it was found that more than 90% of the purified SV40 minichromosomes migrated as a single discrete deoxyribonucleoprotein band upon agarose gel electrophoresis.
We report two new findings bearing on the "supranucleo-somal" level of the structure of the Simian Virus 40 minichromosome. I) Isolated SV40 minichromosome which contains all five histones including HI/I/ exists in solution under approximately physiological ionic conditions as a compact roughly spherical particle approximately 300 A in diameter which is capable of fitting within the virus capsid. In spite of such a compact conformation of the minichromosome individual nucleosomes can be readily visualized within the particle. Compact state of SV40 minichromosome depends on both the presence of histone HI and maintenance of approximately physiological ionic strength of solution (micron approximately 0.15). Removal of HI results in a conversion of the compact minichromosomes into an extended (circular beaded) structure. 2) The compact form of the SV40 minichromosome in contract to its circular beaded form is virtually completely resistant to staphylococcal nuclease, strongly suggesting that in particular nuclease-sensitive parts of the internucleosomal DNA regions are not exposed on the outside of the compact SV40 minichromosome. On the other hand, DNase I which is known to attack both inter-and intranucleosomal DNA in the chronatin /2,3/ readily digests the compact form of the SV40 minichromosome. Possible models of the compact minichromosome and implications for higher order structures of the cellular chromatin are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.