Retinal microvascular cell loss plays a critical role in the pathogenesis of diabetic retinopathy. To examine this further, type 1 streptozotocin-induced diabetic rats and type 2 Zucker diabetic fatty rats were treated by intravitreal injection of the tumor necrosis factorspecific inhibitor pegsunercept, and the impact was measured by analysis of retinal trypsin digests. For type 2 diabetic rats, the number of endothelial cells and pericytes positive for diabetes-enhanced activated caspase-3 decreased by 81% and 86%, respectively, when treated with pegsunercept (P < 0.05). Similarly, the number of diabetes-enhanced terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling-positive endothelial cells and pericytes decreased by 81% and 67% respectively when treated with pegsunercept (P < 0.05). Diabetes-increased activated caspase-3-and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive microvascular cell numbers were both reduced by 81% and 80%, respectively, in pegsunercept-treated type 1 diabetic rats (P < 0.05). Inhibition of tumor necrosis factor reduced type 1 diabetes-enhanced pericyte ghost formation by 87% and the number of type 2 diabetes-enhanced pericyte ghosts by 62% (P < 0.05). Similarly, increased acellular capillary formation caused by type 1 and type 2 diabetes was reduced by 68% and 67%, respectively, when treated with pegsunercept (P < 0.05). These results demonstrate a previously unrecognized role of tumor necrosis factor-␣ in promoting the early pathogenesis of diabetic retinopathy leading to loss of retinal microvascular cells and demonstrate the potential therapeutic benefit of modulating its activity.
OBJECTIVETo investigate early events leading to microvascular cell loss in diabetic retinopathy.RESEARCH DESIGN AND METHODSFOXO1 was tested in vivo by DNA binding activity and by nuclear translocation in microvascular cells in retinal trypsin digests. In vivo studies were undertaken in STZ-induced diabetic rats and Zucker diabetic fatty rats using the tumor necrosis factor (TNF)-specific blocker, pegsunercept, or by inhibiting FOXO1 with RNAi. Microvascular cell apoptosis, formation of pericyte ghosts, and acellular capillaries were measured. Upstream and downstream effects of high-glucose–induced FOXO1 were tested on rat microvascular endothelial cells (RMECs) by small-interfering RNA (siRNA) in vitro.RESULTSDNA binding or nuclear translocation of FOXO1, which was reduced by TNF inhibition, was elevated in type 1 and type 2 diabetic retinas. Diabetes stimulated microvascular cell apoptosis; pericyte ghost and acellular capillary development was inhibited by FOXO1 siRNA. High glucose in vitro decreased FOXO1 phosphorylation and DNA binding activity and decreased Akt phosphorylation in RMECs. High-glucose–stimulated FOXO1 DNA binding activity was mediated through TNF-α and formation of reactive oxygen species (ROS), while inhibitors of TNF and ROS and FOXO1 siRNA reduced high-glucose–enhanced RMEC apoptosis. The caspase-3/7 activity and capacity of high glucose to increase mRNA levels of several genes that regulate RMEC activation and apoptosis were knocked down by FOXO1 siRNA.CONCLUSIONSFOXO1 plays an important role in rat retinal microvascular cell loss in type 1 and type 2 diabetic rats and can be linked to the effect of high glucose on FOXO1 activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.