A high-density oligonucleotide DNA microarray, a genechip, representing the 4.6-Mb genome of the facultative phototrophic proteobacterium, Rhodobacter sphaeroides 2.4.1, was custom-designed and manufactured by Affymetrix, Santa Clara, Calif. The genechip contains probe sets for 4,292 open reading frames (ORFs), 47 rRNA and tRNA genes, and 394 intergenic regions. The probe set sequences were derived from the genome annotation generated by Oak Ridge National Laboratory after extensive revision, which was based primarily upon codon usage characteristic of this GC-rich bacterium. As a result of the revision, numerous missing ORFs were uncovered, nonexistent ORFs were deleted, and misidentified start codons were corrected. To evaluate R. sphaeroides transcriptome flexibility, expression profiles for three diverse growth modes-aerobic respiration, anaerobic respiration in the dark, and anaerobic photosynthesis-were generated. Expression levels of onefifth to one-third of the R. sphaeroides ORFs were significantly different in cells under any two growth modes. Pathways involved in energy generation and redox balance maintenance under three growth modes were reconstructed. Expression patterns of genes involved in these pathways mirrored known functional changes, suggesting that massive changes in gene expression are the major means used by R. sphaeroides in adaptation to diverse conditions. Differential expression was observed for genes encoding putative new participants in these pathways (additional photosystem genes, duplicate NADH dehydrogenase, ATP synthases), whose functionality has yet to be investigated. The DNA microarray data correlated well with data derived from quantitative reverse transcription-PCR, as well as with data from the literature, thus validating the R. sphaeroides genechip as a powerful and reliable tool for studying unprecedented metabolic versatility of this bacterium.Rhodobacter sphaeroides belongs to the facultatively phototrophic anoxygenic proteobacteria, which are known for their broad range of energetic and metabolic capabilities. To derive energy for growth, R. sphaeroides uses aerobic respiration in the presence of oxygen, whereas in the absence of oxygen it can either use anoxygenic photosynthesis (in the presence of light), anaerobic respiration (in the dark, in the presence of appropriate electron acceptors), or fermentation (with appropriate substrates) (23,26,38). The metabolic capabilities of R. sphaeroides include, but are not limited to, dinitrogen fixation, utilization of single-carbon compounds (carbon dioxide or methanol), and utilization or production of molecular hydrogen, as well as detoxification of metal oxides and oxyanions.In R. sphaeroides, transitions from one growth mode to another are affected by diverse environmental factors. Oxygen tension is among the most influential factors that dictate the mode of energy generation. At high oxygen tension, R. sphaeroides lacks a photosynthetic apparatus. Synthesis of the photosystem (PS) is controlled by oxygen levels and is ...
We report a genome-wide survey of early responses of the mouse heart transcriptome to acute myocardial infarction (AMI). For three regions of the left ventricle (LV), namely, ischemic/infarcted tissue (IF), the surviving LV free wall (FW), and the interventricular septum (IVS), 36,899 transcripts were assayed at six time points from 15 min to 48 h post-AMI in both AMI and sham surgery mice. For each transcript, temporal expression patterns were systematically compared between AMI and sham groups, which identified 515 AMI-responsive genes in IF tissue, 35 in the FW, 7 in the IVS, with three genes induced in all three regions. Using the literature, we assigned functional annotations to all 519 nonredundant AMI-induced genes and present two testable models for central signaling pathways induced early post-AMI. First, the early induction of 15 genes involved in assembly and activation of the activator protein-1 (AP-1) family of transcription factors implicates AP-1 as a dominant regulator of earliest post-ischemic molecular events. Second, dramatic increases in transcripts for arginase 1 (ARG1), the enzymes of polyamine biosynthesis, and protein inhibitor of nitric oxide synthase (NOS) activity indicate that NO production may be regulated, in part, by inhibition of NOS and coordinate depletion of the NOS substrate, L: -arginine. ARG1: was the single-most highly induced transcript in the database (121-fold in IF region) and its induction in heart has not been previously reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.