The fine structure of pig oocytes at the germinal vesicle (GV) stage and early preimplantation embryos (one to four blastomeres) isolated at slaughter was investigated by cytochemical and immunocytochemical methods. The distribution of nucleic acids and ribonucleoproteins (RNPs) in "compact nucleoli" [denominated nucleolus-like bodies (NLB) in oocytes and nucleolus precursor bodies (NPB) in early embryos] and in intranuclear bodies or granules was investigated by staining methods preferential for nuclear RNPs or using the osmium ammine or ethidium bromide-phosphotungstic acid (EB-PTA) reactions for nucleic acids. The distributions of the Sm antigen of nucleoplasmic small nuclear RNPs (snRNPs), the methyl-3 guanosine (m3G) cap of snRNAs and the splicing factor SC-35 were detected by immunoelectron microscopy using specific antibodies. The RNP nature of both NLBs and NPBs, and of nuclear granules in oocytes and embryos, and of fibrillar strands radially projecting from NLBs was revealed. Cytochemical evidence for RNA as a component of NLBs was further provided by EB-PTA staining in combination with the enzymatic removal of RNA, or by osmium-ammine staining without previous acid hydrolysis, while the absence of DNA in NLBs was established by Feulgen-like osmium-ammine staining. In addition, autoradiography demonstrated the absence of [6-3H]thymidine incorporation into NPBs. Other autoradiographic evidence attested the accumulation of RNA in NLBs of oocytes after a 60 min in vitro pulse of [5-3H]uridine. Immunoelectron microscopy using specific antibodies revealed the occurrence of nucleoplasmic snRNPs in both NLBs and NPBs. The presence of snRNA in NLB was confirmed by means of an antibody recognizing the m3G-cap structure. Another spliceosomal component, the protein SC-35 was also detected in NLBs. Among the numerous and variable intranuclear granules occurring mostly in aggregates, the Sm antigen was clearly detected only in the interchromatin granule-type component. Some Sm labeling was occasionally seen in other categories of larger granules. No reaction was detected over any granules when using the anti-m3G-cap antibody. The aggregates consisting of large granules and a finely fibrillar component were intensely immunolabeled by the anti-SC-35 splicing factor probe. Our observations suggest that the compact nucleoli, known to be present before and after fertilization in mammals (NLBs of oocytes and NPBs of early embryos), represent nuclear structural elements containing nonnucleolar, spliceosomal components.
Small nuclear ribonucleoproteins (snRNPs) were localized using human autoimmune or monoclonal anti-snRNP antibodies and ultrastructural immunocytochemistry in early preimplantation bovine embryos before and at transcription onset. Bovine cleavage stages up to 16-cell embryos were obtained either by culture of in vitro-fertilized ovarian oocytes or by isolation at slaughter of embryos fertilized and developed in vivo. Before transcription onset, up to the four-cell stage, diffuse labeling of nucleoplasm was detected, whereas cytoplasm labeling remained low. At the transcription onset, labeling of all eight-cell embryo nuclei was markedly concentrated at the borderline of already formed, condensed chromatin aggregates, where it was associated mainly with perichromatin fibrils. The condensed chromatin blocks revealed by several different staining methods were more prominent than is the case in most somatic cells. The degree of chromatin condensation and the pattern of its distribution differed between in vivo- and in vitro-produced eight-cell embryos: the in vitro embryos showed a higher degree of chromatin condensation and a peripheral distribution of chromatin blocks. A relation of this observation to the developmental potential of cow embryos is suggested. In two- and four-cell embryos, intensive labeling was seen in interchromatin granules, which, in their turn, were often seen in close proximity to the nucleolus precursor bodies, or in the four-cell stage were interconnected to them. No labeling was ever seen, using antibodies specific for the snRNP Sm antigen, in nucleolar precursor bodies during embryonic nucleologenesis nor in the resulting nucleoli. There was some incidental labeling of the large central vacuole appearing at the beginning of the nucleolus precursor body transformation, testifying the nucleoplasmic origin of this entity.
The applicability of Pavlok's method characterising the nuclear status of early preimplantation bovine embryos by nuclear labelling pattern after a short pulse of [5-3H]uridine (revealing in situ detection of RNA transcription at the onset of the major embryonic transcription) was tested on experimentally irradiated 8- to 16-cell bovine embryos. After [5-3H]uridine labelling the semi-thin sections of these embryos were analysed by autoradiography for intranuclear distribution of newly synthesised RNA expected to be influenced by increasing doses of irradiation by gamma rays from a 60Co source. In control embryos, the labelling was homogeneously distributed in nucleoplasm and in nucleoli. The expected effects were clearly detected already in embryos irradiated with a dose of 2 Gy, in which low-level RNA synthesis was localised mostly at the periphery of the nucleus, the nuclear centre being without labelling. A detailed analysis of consecutive sections of embryos from all groups of irradiated and control embryos, using an arbitrary scale considering these effects, confirmed the detectability of the threshold level of genome impairment.
Early bovine precompacted embryos (1 to 8 blastomeres) were analysed by electron microscopy. The volume density of cellular components was determined by morphometric analysis to quantify the ultrastructure of early bovine embryos produced either in vivo or in vitro both after fertilisation by intracytoplasmic sperm injection (ICSI) or from electrically stimulated oocytes (AC/DC). In normal embryos obtained in vivo (control), most of the cellular volume was occupied by cytoplasm (82.93%). The relative volume of lipids, vacuoles, mitochondria, Golgi apparatus and inclusion bodies was minimal. In the group of embryos after parthenogenetic activation (AC/DC) a relatively high proportion of the volume was occupied by vacuoles and lipids (18.68% vs 14.33%). Early ICSI-derived embryos contained the lowest relative volume of cytoplasm (58.33%) compared with the control embryos (in vivo) and parthenogenetically AC/DC-activated embryos and a higher volume was occupied by lipids (13.25%) and vacuoles (12.92%). It is concluded that in vitro produced embryos have a significantly altered ultrastructure, indicating extensive cellular damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.