The energy of the 12 C, 16 O, 20 Ne, 24 Mg and 32 S 4n-nuclei has been determined within a generalized liquid drop model and assuming different planar and three-dimensional shapes of α-molecules : linear chain, triangle, square, tetrahedron, pentagon, trigonal bipyramid, square pyramid, hexagon, octahedron, octogon and cube. The potential barriers governing the entrance and decay channels via α absorption or emission as well as more symmetric binary and ternary reactions have been compared. The rms radii of the linear chains differ from the experimental rms radii of the ground states. The binding energies of the three-dimensional shapes at the contact point are higher than the ones of the planar configurations. The alpha particle plus A-4 daughter configuration leads always to the lowest potential barrier. The binding energy can be reproduced within the sum of the binding energy of n α particles plus the number of bonds multiplied by 2.4 MeV or by the sum of the binding energies of one alpha particle and the daughter nucleus plus the Coulomb energy and the proximity energy.
A facility for detection of scattered neutrons in the energy interval 50 − 130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), is part of the standard detection system at the 20-180 MeV neutron beam facility of the The Svedberg Laboratory, Uppsala. It has primarily been used for studies of elastic neutron scattering, but it has been employed for (n,p) and (n,d) reaction experiments as well. Results of recent experiments are presented to illustrate the performance of the spectrometer. Recently, the facility has been upgraded to perform also (n,Xn') experiments. For this purpose, a new converter, CLODIA, has been developed and installed. Preliminary results of the commissioning of CLODIA will be presented.
Accelerator driven system will use a heavy element target such as lead. Many calculations are available to simulate high-energy spallation neutron induced reactions, but little data are available for comparison with the simulations.In order to constrain the simulation tools we have measured (n,Xn) double differential cross section on different targets at The Svedberg Laboratory, Uppsala, Sweden. For neutron energy above 40 MeV, we have developed a novel detector, CLODIA, based on proton recoil and drift chambers to determine neutron energy. CLODIA (Chamber for LOcalization with DrIft and Amplification) is able to track recoil protons with energy up to 90 MeV with spatial resolution of about one millimeter and a detection efficiency of 99% for each drift chamber. Using CLODIA coupled wit * h the SCANDAL set-up, we have been able to measure double differential (n,Xn) cross section on lead and iron for incident neutron energy in the 40-95 MeV energy region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.