Digital engineering workflows, involving physico-chemical simulation and advanced statistical algorithms, offer a robust and cost-effective methodology for model-based internal combustion engine development. In this paper, a modern Tier 4 capable Cat ® C4.4 engine is modelled using a digital workflow that combines the probability density function (PDF)-based Stochastic Reactor Model (SRM) Engine Suite with the statistical Model Development Suite (MoDS). In particular, an advanced multi-zonal approach is developed and applied to simulate fuels, in-cylinder combustion and gas phase as well as particulate emissions characteristics, validated against measurements and benchmarked with respect to the predictive power and computational costs of the baseline model. The multizonal SRM characterises the combustion chamber on the basis of different multi-dimensional PDFs dependent upon the bulk or the thermal boundary layer in contact with the cylinder liner. In the boundary layer, turbulent mixing is significantly weaker and heat transfer to the liner alters the combustion process. The integrated digital workflow is applied to perform parameter estimation based on the in-cylinder pressure profiles and engine-out emissions (i.e. NOx, CO, soot and unburnt hydrocarbons; uHCs) measurements. Four DoE (design-of-experiments) datasets are considered, each comprising measurements at a single load-speed point with various other operating conditions, which are then used to assess the capability of the calibrated models in mimicking the impact of the input variable space on the combustion characteristics and emissions. Both model approaches predict in-cylinder pressure profiles, NOx, and soot emissions satisfactorily well across all four datasets. Capturing the physics of emission formation near the cylinder liner enables the multi-zonal SRM approach to provide improved predictions for intermediates, such as CO and uHCs, particularly at low load operating points. Finally, fast-response surrogates are generated using the High Dimensional Model Representation (HDMR) approach, and the associated global sensitivities of combustion metrics and emissions are also investigated.
Parameters describing soot particle processes are generally derived from a limited number of experimental studies. These parameters then have to be carefully calibrated for different operating conditions in internal combustion engine applications. This paper presents an innovative calibration procedure for soot
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.